12 research outputs found

    Complex cytogenetic and molecular-genetic analysis of males with spermatogenesis failure

    No full text
    The chromosomal anomalies, microdeletions of AZF region of Y-chromosome and CFTR gene mutations have been studied among 80 infertile men with idiopathic spermatogenetic failure: 36 (45 %) patients with aspermia, 19 (24 %) patients with azoospermia and 25 (31 %) patients with severe oligoasthenoteratozoospermia. In total 30 % males with spermatogenetic failure genetic factor of infertility was observed. Karyotype anomalies were observed in 17.5 % of infertile men, within 16.2 % numerical and structural gonosomal anomalies and in 1.3 % – Robertsonian translocation were revealed. In 11 % males with spermatogenetic failure, Y-chromosome AZF region microdeletions were detected. The frequency of CFTR major mutation F508del among infertile men was 6.25 %. 5T allele of polymorphic locus IVS8polyT was detected in 7.5 % of examined men. The results obtained indicate the high complexity of cytogenetic and moleculargenetic studies of male infertility.Π˜Π·ΡƒΡ‡Π°Π»ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосом, ΠΌΠΈΠΊΡ€ΠΎΠ΄Π΅Π»Π΅Ρ†ΠΈΠΈ AZF Ρ€Π΅Π³ΠΈΠΎΠ½Π° Y-хромосомы ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π³Π΅Π½Π° Π’Π Π‘Πœ Ρƒ 80 ΠΌΡƒΠΆΡ‡ΠΈΠ½ с идиопатичСскими Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Ρƒ 36 (45 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с аспСрмиСй, 19 (24 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с азооспСрмиСй ΠΈ 25 (31 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с олигоастСнотСратозооспСрмиСй IV стСпСни. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ Ρƒ 30 % ΠΌΡƒΠΆΡ‡ΠΈΠ½ с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза установлСны гСнСтичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ бСсплодия. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠ° наблюдали Ρƒ 17.5 % бСсплодных ΠΌΡƒΠΆΡ‡ΠΈΠ½, срСди Π½ΠΈΡ… Ρƒ 16.2 % – количСствСнныС ΠΈ структурныС Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосом ΠΈ Ρƒ 1.3 % – Ρ€ΠΎΠ±Π΅Ρ€Ρ‚ΡΠΎΠ½ΠΎΠ²ΡΠΊΡƒΡŽ Ρ‚Ρ€Π°Π½ΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΡŽ. Π£ 11 % ΠΌΡƒΠΆΡ‡ΠΈΠ½ с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза выявили ΠΌΠΈΠΊΡ€ΠΎΠ΄Π΅Π»Π΅Ρ†ΠΈΠΈ AZF Ρ€Π΅Π³ΠΈΠΎΠ½Π° Y хромосомы. Частота ΠΌΠ°ΠΆΠΎΡ€Π½ΠΎΠΉ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ F508del Π³Π΅Π½Π° Π’Π Π‘Πœ срСди бСсплодных ΠΌΡƒΠΆΡ‡ΠΈΠ½ составила 6.25 %. 5T аллСль ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ локуса IVS8polyT выявили Ρƒ 7.5 % обслСдованных ΠΌΡƒΠΆΡ‡ΠΈΠ½. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ высокой информативности комплСксного цитогСнСтичСского ΠΈ молСкулярно-гСнСтичСского исслСдования ΠΏΡ€ΠΈ муТском бСсплодии

    Cytogenetic and molecular analyses of de novo translocation dic(9;13)(p11.2;p12) in an infertile male

    Get PDF
    BACKGROUND: Whole arm t(9;13)(p11;p12) translocations are rare and have been described only a few times; all of the previously reported cases were familial. RESULTS: We present here an infertile male carrier with a whole-arm reciprocal translocation dic(9;13)(p11.2;p12) revealed by GTG-, C-, and NOR-banding karyotypes with no mature sperm cells in his ejaculate. FISH and genome-wide 400Β K CGH microarray (Agilent) analyses demonstrated a balanced chromosome complement and further characterised the abnormality as a dicentric chromosome (9;13): dic(9;13)(pterβ†’p11.2::p12β†’qter),neo(9)(pterβ†’p12β†’neoβ†’p11.2). An analysis of the patient’s ejaculated cells identified immature germ cells at different phases of spermatogenesis but no mature spermatozoa. Most (82.5%) of the germ cells were recognised as spermatocytes at stage I, and the cell nuclei were most frequently found in pachytene I (41.8%). We have also undertaken FISH analysis and documented an increased rate of aneuploidy of chromosomes 15, 18, X and Y in the peripheral blood leukocytes of our patient. To study the aneuploidy risk in leukocytes, we have additionally included 9 patients with non-obstructive azoospermia with normal karyotypes. CONCLUSIONS: We propose that the azoospermia observed in the patient with the dic(9;13)(p11.2;p12) translocation was most likely a consequence of a very high proportion (90%) of association between XY bivalents and quadrivalent formations in prophase I

    Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses

    No full text
    Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – 30.38 % and monosomy X – 19.11 %. Complex analysis of frequency and distribution of allelic variants of genes HLA-DRB1 and HLA-DQA1 allowed establishing the alleles DRB1*0301, DRB1*1101-1104 and DQA1*0501 to be aggressor alleles in women with recurrent pregnancy loss (RPL). The cumulative homology of allelic polymorphism of more than 50 % of HLA-DRB1 and HLA-DQA1 loci between partners increases the risk of RPL by almost four times. Conclusion. The detected chromosome aneuploidies in the samples from products of conception and the changes in the major histocompatibility complex genes can cause the failure of a couples reproductive function and can lead to an early fetal loss.ΠœΠ΅Ρ‚Π°. Встановити хромосомні Π°Π½ΠΎΠΌΠ°Π»Ρ–Ρ— Ρƒ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ– Ρ€Π°Π½Π½Ρ–Ρ… Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Π²Ρ‚Ρ€Π°Ρ‚ Ρ– алСльний ΠΏΠΎΠ»Ρ–ΠΌΠΎΡ€Ρ„Ρ–Π·ΠΌ Π³Π΅Π½Ρ–Π² HLA – DRB1 Ρ– DQA1 Ρƒ ΠΏΠΎΠ΄Ρ€ΡƒΠΆΠ½Ρ–Ρ… ΠΏΠ°Ρ€ Ρ–Π· Π½Π°Π²ΠΈΠΊΠΎΠ²ΠΈΠΌ Π½Π΅Π²ΠΈΠ½ΠΎΡˆΡƒΠ²Π°Π½Π½ΡΠΌ вагітності. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΠΈΠΉ Ρ†ΠΈΡ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΉ Ρ‚Π° Ρ–Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½ΠΈΠΉ mFISH ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ, виділСння Π”ΠΠš ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ висолювання, ΠŸΠ›Π , Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π² Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠΌΡƒ Π³Π΅Π»Ρ–. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π¦ΠΈΡ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½Ρ– Ρ‚Π° молСку­лярно-Ρ†ΠΈΡ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½Ρ– дослідТСня ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ Π²Ρ‚Ρ€Π°Ρ‡Π΅Π½ΠΈΡ… вагітностСй ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π°Π½ΠΎΠΌΠ°Π»Ρ–Ρ— ΠΊΠ°Ρ€Ρ–ΠΎΡ‚ΠΈΠΏΡƒ Π² 32.4 % Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ… Π· пСрСваТанням аутосомних трисомій – 42.65 %, Ρ‚Ρ€ΠΈΠΏΠ»ΠΎΡ—Π΄Ρ–ΠΉ – 30.38 % Ρ– моносомії X – 19.11 %. КомплСксний Π°Π½Π°Π»Ρ–Π· частоти Ρ– Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ Π°Π»Π΅Π»ΡŒΠ½ΠΈΡ… Π²Π°Ρ€Ρ–Π°Π½Ρ‚Ρ–Π² Π³Π΅Π½Ρ–Π² HLA-DRB1 Ρ– HLA-DQA1 Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ² встановити, Ρ‰ΠΎ DRB1*0301, DRB1*1101-1104 Ρ– DQA1*0501 Ρ” алСлями-агрСсорами Ρƒ ΠΆΡ–Π½ΠΎΠΊ Ρ–Π· Ρ€Π°Π½Π½Ρ–ΠΌΠΈ Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π²Ρ‚Ρ€Π°Ρ‚Π°ΠΌΠΈ (Π Π Π’). Π‘ΡƒΠΊΡƒΠΏΠ½Π° гомологія алСльного ΠΏΠΎΠ»Ρ–ΠΌΠΎΡ€Ρ„Ρ–Π·ΠΌΡƒ локусів HLA-DRB1 Ρ– HLA-DQA1 Π±Ρ–Π»ΡŒΡˆΠ΅ 50 % ΠΌΡ–ΠΆ ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€Π°ΠΌΠΈ Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ” Ρ€ΠΈΠ·ΠΈΠΊ Π Π Π’ ΠΌΠ°ΠΉΠΆΠ΅ Π² Ρ‡ΠΎΡ‚ΠΈΡ€ΠΈ Ρ€Π°Π·ΠΈ. Висновки. ВстановлСні хромосомні Π°Π½Π΅ΡƒΠΏΠ»ΠΎΡ—Π΄Ρ–Ρ— Π² ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ– Π²Ρ‚Ρ€Π°Ρ‡Π΅Π½ΠΈΡ… вагітностСй Ρ‚Π° Π·ΠΌΡ–Π½ΠΈ Π² Π³Π΅Π½Π°Ρ… Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ комплСкса гістосумістності Ρƒ ΠΏΠΎΠ΄Ρ€ΡƒΠΆΠ½Ρ–Ρ… ΠΏΠ°Ρ€ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ‚ΠΈ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— Ρ‚Π° Ρ€Π°Π½Π½ΡŽ Π΅Π»Ρ–ΠΌΡ–Π½Π°Ρ†Ρ–ΡŽ ΠΏΠ»ΠΎΠ΄Π°.ЦСль. ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ хромосомныС Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ Π² биологичСском ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ Ρ€Π°Π½Π½ΠΈΡ… Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Ρ€ΡŒ ΠΈ Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌ Π³Π΅Π½ΠΎΠ² HLA – DRB1 ΠΈ DQA1 Ρƒ супруТСских ΠΏΠ°Ρ€ с ΠΏΡ€ΠΈΠ²Ρ‹Ρ‡Π½Ρ‹ΠΌ Π½Π΅Π²Ρ‹Π½Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ бСрСмСнности. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. стан­дартный цитогСнСтичСский ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹ΠΉ mFISH ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π”ΠΠš ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ высаливания, ПЦР, элСктрофорСз Π² Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠΌ Π³Π΅Π»Π΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ цитогСнСтичСскиС ΠΈ молСкулярно-цитогСнСтичСскиС исслСдований ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Ρ€Π°Π½Π½ΠΈΡ… Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Ρ€ΡŒ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ ΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠ° Π² 32.4 % случаСв с ΠΏΡ€Π΅ΠΎΠ±Π»Π°Β­Π΄Π°Π½ΠΈΠ΅ΠΌ аутосомных трисомий – 42.65 %, Ρ‚Ρ€ΠΈΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΉ – 30.38 % ΠΈ моносомии Π₯ – 19.11 %. ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· частоты ΠΈ распрСдСлСния Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Π³Π΅Π½ΠΎΠ² HLA-DRB1 ΠΈ HLA-DQA1ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ DRB1*0301, DRB1*1101-1104 ΠΈ DQA1*0501 ΡΠ²Π»ΡΡŽΡ‚ΡΡ аллСлями-агрСссорами Ρƒ ΠΆΠ΅Π½Ρ‰ΠΈΠ½ с Ρ€Π°Π½Π½ΠΈΠΌΠΈ Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ потСрями (РРП). Бовокупная гомология аллСльного ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠ° локусов HLA-DRB1 ΠΈ HLA-DQA1 Π±ΠΎΠ»Π΅Π΅ 50 % ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€Π°ΠΌΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ риск РРП ΠΏΠΎΡ‡Ρ‚ΠΈ Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π°Π·Π°. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ВыявлСнныС хромосомныС Π°Π½Π΅ΡƒΠΏΠ»ΠΎΠΈΠ΄ΠΈΠΈ Π² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ ΡΠ°ΠΌΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Ρ‹ΠΊΠΈΠ΄Ρ‹ΡˆΠ΅ΠΉ ΠΈ измСнСния Π² Π³Π΅Π½Π°Ρ… Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ комплСкса гистосовмСстимости Ρƒ супруТСских ΠΏΠ°Ρ€ ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΡΠ»ΠΈΠΌΠΈΠ½Π°Ρ†ΠΈΡŽ ΠΏΠ»ΠΎΠ΄Π° Π² Ρ€Π°Π½Π½Π΅ΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ бСрСмСнности

    INHERITED 15Q DUPLICATION IN THREE NOT RELATED UKRAINIAN FAMILIES

    Get PDF
    Background. 15q duplication syndrome (Dup15q) is caused by the presence of an extra maternally derived copy of the Prader-Willi/Angelman critical region (PWACR) within chromosome 15q11.2-q13.1. The syndrome is clinically identifiable and characterized by intellectual disability, hypotonia, motor delays, autism spectrum disorder, epilepsy, and behavioral difficulties [1, 12]. The prevalence of Dup15q in the general population is unknown but may be as high as 1:5000 [10]. The syndrome most commonly occurs in one of two forms: an extra isodicentric 15 chromosome or an interstitial duplication [4]. Most reported cases concern de novo mutation. Aim. To highlight the importance of genetic testing in patients with neurodevelopmental disorders and emphasizes the need for further research to understand the underlying genetic mechanisms of Dup15q depending on the origin of the inherited duplication. Materials and methods. The study used next-generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), and karyotype analysis to confirm the interstitial duplication. Results. We present the phenotype description and diagnostic prospects of three patients from different families who inherited interstitial 15q duplication from a phenotypically healthy mother. The patients exhibited symptoms consistent with Dup15q, including intellectual disability, delayed speech, difficulty understanding spoken language, hyperactivity, epilepsy and sleep disorders. Conclusion. The inherited interstitial duplication 15q is phenotypical presented only in case of maternal origin and vary in clinical presentation. We suggest as the first choice MLPA method as most cost and time effective in cases of Dup15q suspicion

    Abstracts from the 3rd Conference on Aneuploidy and Cancer: Clinical and Experimental Aspects

    Get PDF

    Familial Infertility (Azoospermia and Cryptozoospermia) in Two Brothersβ€”Carriers of t(1;7) Complex Chromosomal Rearrangement (CCR): Β Molecular Cytogenetic Analysis

    No full text
    Structural aberrations involving more than two breakpoints on two or more chromosomes are known as complex chromosomal rearrangements (CCRs). They can reduce fertility through gametogenesis arrest developed due to disrupted chromosomal pairing in the pachytene stage. We present a familial case of two infertile brothers (with azoospermia and cryptozoospermia) and their mother, carriers of an exceptional type of CCR involving chromosomes 1 and 7 and three breakpoints. The aim was to identify whether meiotic disruption was caused by CCR and/or genomic mutations. Additionally, we performed a literature survey for male CCR carriers with reproductive failures. The characterization of the CCR chromosomes and potential genomic aberrations was performed using: G-banding using trypsin and Giemsa staining (GTG banding), fluorescent in situ hybridization (FISH) (including multicolor FISH (mFISH) and bacterial artificial chromosome (BAC)-FISH), and genome-wide array comparative genomic hybridization (aCGH). The CCR description was established as: der(1)(1qter->1q42.3::1p21->1q42.3::7p14.3->7pter), der(7)(1pter->1p2 1::7p14.3->7qter). aCGH revealed three rare genes variants: ASMT, GARNL3, and SESTD1, which were ruled out due to unlikely biological functions. The aCGH analysis of three breakpoint CCR regions did not reveal copy number variations (CNVs) with biologically plausible genes. Synaptonemal complex evaluation (brother-1; spermatocytes II/oligobiopsy; the silver staining technique) showed incomplete conjugation of the chromosomes. Associations between CCR and the sex chromosomes (by FISH) were not found. A meiotic segregation pattern (brother-2; ejaculated spermatozoa; FISH) revealed 29.21% genetically normal/balanced spermatozoa. The aCGH analysis could not detect smaller intergenic CNVs of few kb or smaller (indels of single exons or few nucleotides). Since chromosomal aberrations frequently do not affect the phenotype of the carrier, in contrast to the negative influence on spermatogenesis, there is an obvious need for genomic sequencing to investigate the point mutations that may be responsible for the differences between the azoospermic and cryptozoospermic phenotypes observed in a family. Progeny from the same parents provide a unique opportunity to discover a novel genomic background of male infertility

    Complex cytogenetic and molecular-genetic analysis of males with spermatogenesis failure

    No full text
    The chromosomal anomalies, microdeletions of AZF region of Y-chromosome and CFTR gene mutations have been studied among 80 infertile men with idiopathic spermatogenetic failure: 36 (45 %) patients with aspermia, 19 (24 %) patients with azoospermia and 25 (31 %) patients with severe oligoasthenoteratozoospermia. In total 30 % males with spermatogenetic failure genetic factor of infertility was observed. Karyotype anomalies were observed in 17.5 % of infertile men, within 16.2 % numerical and structural gonosomal anomalies and in 1.3 % – Robertsonian translocation were revealed. In 11 % males with spermatogenetic failure, Y-chromosome AZF region microdeletions were detected. The frequency of CFTR major mutation F508del among infertile men was 6.25 %. 5T allele of polymorphic locus IVS8polyT was detected in 7.5 % of examined men. The results obtained indicate the high complexity of cytogenetic and moleculargenetic studies of male infertility.Π˜Π·ΡƒΡ‡Π°Π»ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосом, ΠΌΠΈΠΊΡ€ΠΎΠ΄Π΅Π»Π΅Ρ†ΠΈΠΈ AZF Ρ€Π΅Π³ΠΈΠΎΠ½Π° Y-хромосомы ΠΈ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π³Π΅Π½Π° Π’Π Π‘Πœ Ρƒ 80 ΠΌΡƒΠΆΡ‡ΠΈΠ½ с идиопатичСскими Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Ρƒ 36 (45 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с аспСрмиСй, 19 (24 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с азооспСрмиСй ΠΈ 25 (31 %) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с олигоастСнотСратозооспСрмиСй IV стСпСни. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ Ρƒ 30 % ΠΌΡƒΠΆΡ‡ΠΈΠ½ с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза установлСны гСнСтичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ бСсплодия. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΊΠ°Ρ€ΠΈΠΎΡ‚ΠΈΠΏΠ° наблюдали Ρƒ 17.5 % бСсплодных ΠΌΡƒΠΆΡ‡ΠΈΠ½, срСди Π½ΠΈΡ… Ρƒ 16.2 % – количСствСнныС ΠΈ структурныС Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосом ΠΈ Ρƒ 1.3 % – Ρ€ΠΎΠ±Π΅Ρ€Ρ‚ΡΠΎΠ½ΠΎΠ²ΡΠΊΡƒΡŽ Ρ‚Ρ€Π°Π½ΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΡŽ. Π£ 11 % ΠΌΡƒΠΆΡ‡ΠΈΠ½ с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ спСрматогСнСза выявили ΠΌΠΈΠΊΡ€ΠΎΠ΄Π΅Π»Π΅Ρ†ΠΈΠΈ AZF Ρ€Π΅Π³ΠΈΠΎΠ½Π° Y хромосомы. Частота ΠΌΠ°ΠΆΠΎΡ€Π½ΠΎΠΉ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ F508del Π³Π΅Π½Π° Π’Π Π‘Πœ срСди бСсплодных ΠΌΡƒΠΆΡ‡ΠΈΠ½ составила 6.25 %. 5T аллСль ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„Π½ΠΎΠ³ΠΎ локуса IVS8polyT выявили Ρƒ 7.5 % обслСдованных ΠΌΡƒΠΆΡ‡ΠΈΠ½. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ высокой информативности комплСксного цитогСнСтичСского ΠΈ молСкулярно-гСнСтичСского исслСдования ΠΏΡ€ΠΈ муТском бСсплодии
    corecore