2 research outputs found

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa

    Ultra-High Energy Cosmic Ray production in the polar cap regions of black hole magnetospheres

    Full text link
    We develop a model of ultra-high energy cosmic ray (UHECR) production via acceleration in a rotation-induced electric field in vacuum gaps in the magnetospheres of supermassive black holes (BH). We show that if the poloidal magnetic field near the BH horizon is misaligned with the BH rotation axis, charged particles, which initially spiral into the BH hole along the equatorial plane, penetrate into the regions above the BH "polar caps" and are ejected with high energies to infinity. We show that in such a model acceleration of protons near a BH of typical mass 3e8 solar masses is possible only if the magnetic field is almost aligned with the BH rotation axis. We find that the power of anisotropic electromagnetic emission from an UHECR source near a supermassive BH should be at least 10-100 times larger then UHECR power of the source. This implies that if the number of UHECR sources within the 100 Mpc sphere is ~100, the power of electromagnetic emission which accompanies proton acceleration in each source, 1042−4310^{42-43} erg/s, is comparable to the typical luminosities of active galactic nuclei (AGN) in the local Universe. We also explore the acceleration of heavy nuclei, for which the constraints on the electromagnetic luminosity and on the alignment of magnetic field in the gap are relaxed
    corecore