340 research outputs found

    Thermodynamic and Kinetic Stabilities of Al(III) Complexes with N2O3 Pentadentate Ligands

    Get PDF
    : Al(III) complexes have been recently investigated for their potential use in imaging with positron emission tomography (PET) by formation of ternary complexes with the radioisotope fluorine-18 (18F). Although the derivatives of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) are the most applied chelators for [Al18F]2+ labelling and (pre)clinical PET imaging, non-macrocyclic, semi-rigid pentadentate chelators having two N- and three O-donor atoms such as RESCA1 and AMPDA-HB have been proposed with the aim to allow room temperature labelling of temperature-sensitive biomolecules. The paucity of stability data on Al(III) complexes used for PET imaging instigated a complete thermodynamic and kinetic solution study on Al(III) complexes with aminomethylpiperidine (AMP) derivatives AMPTA and AMPDA-HB and the comparison with a RESCA1-like chelator CD3A-Bn (trans-1,2-diaminocyclohexane-N-benzyl-N,N',N'-triacetic acid). The stability constant of [Al(AMPDA-HB)] is about four orders of magnitude higher than that of [Al(AMPTA)] and [Al(CD3A-Bn)], highlighting the greater affinity of phenolates with respect to acetate O-donors. On the other hand, the kinetic inertness of the complexes, determined by following the Cu2+-mediated transmetallation reactions in the 7.5-10.5 pH range, resulted in a spontaneous and hydroxide-assisted dissociation slightly faster for [Al(AMPTA)] than for the other two complexes (t1/2 = 4.5 h for [Al(AMPTA)], 12.4 h for [Al(AMPDA-HB)], and 24.1 h for [Al(CD3A-Bn)] at pH 7.4 and 25 °C). Finally, the [AlF]2+ ternary complexes were prepared and their stability in reconstituted human serum was determined by 19F NMR experiments

    2,4-Dimethoxy­benzaldehyde azine

    Get PDF
    The title mol­ecule, C18H20N2O4, is located on a crystallographic centre of symmetry. The meth­oxy groups are coplanar with the benzene ring [interplanar angles of 14.4 (2) and 3.1 (3)°], indicating a conjugation effect

    Interindividual variation and consistency of migratory behavior in the Eurasian woodcock

    Get PDF
    Diverse spatio-temporal aspects of avian migration rely on relatively rigid endogenous programs. However, flexibility in migratory behavior may allow effective coping with unpredictable variation in ecological conditions that can occur during migration. We aimed at characterizing inter- and intraindividual variation of migratory behavior in a forest-dwelling wader species, the Eurasian woodcock Scolopax rusticola, focusing on spatio-temporal consistency across repeated migration episodes. By satellite-tracking birds from their wintering sites along the Italian peninsula to their breeding areas, we disclosed a remarkable variability in migration distances, with some birds flying more than 6,000 km to Central Asian breeding grounds (up to 101\ub0E). Prebreeding migration was faster and of shorter duration than postbreeding migration. Birds moving over longer distances migrated faster during prebreeding migration, and those breeding at northernmost latitudes left their wintering areas earlier. Moreover, birds making longer migrations departed earlier from their breeding sites. Breeding site fidelity was very high, whereas fidelity to wintering areas increased with age. Migration routes were significantly consistent, both among repeated migration episodes and between pre- and postbreeding migration. Prebreeding migration departure date was not significantly repeatable, whereas arrival date to the breeding areas was highly repeatable. Hence, interindividual variation in migratory behavior of woodcocks was mostly explained by the location of the breeding areas, and spatial consistency was relatively large through the entire annual cycle. Flexibility in prebreeding migration departure date may suggest that environmental effects have a larger influence on temporal than on spatial aspects of migratory behavior

    (E)-4-Octyloxybenzaldehyde thio­semicarbazone

    Get PDF
    In the title compound, C16H25N3OS, the thio­semicarbazone group adopts an E configuration with respect to the C=N bond and is almost coplanar with the benzene ring, forming a dihedral angle of 9.3 (1)°. In the crystal packing, the mol­ecules lie along the a axis in an anti­parallel arrangement and are held in place by van der Waals inter­actions. As a consequence, there is relatively low anisotropic thermal motion in the terminal atoms of the n-octyl chain

    Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera cv. Glera

    Get PDF
    Background Bacillus licheniformis GL174 is a culturable endophytic strain isolated from Vitis vinifera cultivar Glera, the grapevine mainly cultivated for the Prosecco wine production. This strain was previously demonstrated to possess some specific plant growth promoting traits but its endophytic attitude and its role in biocontrol was only partially explored. In this study, the potential biocontrol action of the strain was investigated in vitro and in vivo and, by genome sequence analyses, putative functions involved in biocontrol and plant-bacteria interaction were assessed. Results Firstly, to confirm the endophytic behavior of the strain, its ability to colonize grapevine tissues was demonstrated and its biocontrol properties were analyzed. Antagonism test results showed that the strain could reduce and inhibit the mycelium growth of diverse plant pathogens in vitro and in vivo. The strain was demonstrated to produce different molecules of the lipopeptide class; moreover, its genome was sequenced, and analysis of the sequences revealed the presence of many protein-coding genes involved in the biocontrol process, such as transporters, plant-cell lytic enzymes, siderophores and other secondary metabolites. Conclusions This step-by-step analysis shows that Bacillus licheniformis GL174 may be a good biocontrol agent candidate, and describes some distinguished traits and possible key elements involved in this process. The use of this strain could potentially help grapevine plants to cope with pathogen attacks and reduce the amount of chemicals used in the vineyard

    Option prices under Bayesian learning: implied volatility dynamics and predictive densities

    Get PDF
    This paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolve on a binomial lattice with unknown but recursively updated probabilities we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of-sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model

    Mulheres na entomologia: análises de cenários e perspectivas

    Get PDF
    corecore