3,107 research outputs found

    Control of the finite size corrections in exact diagonalization studies

    Full text link
    We study the possibility of controlling the finite size corrections in exact diagonalization studies quantitatively. We consider the one- and two dimensional Hubbard model. We show that the finite-size corrections can be be reduced systematically by a grand-canonical integration over boundary conditions. We find, in general, an improvement of one order of magnitude with respect to studies with periodic boundary conditions only. We present results for ground-state properties of the 2D Hubbard model and an evaluation of the specific heat for the 1D and 2D Hubbard model.Comment: Phys. Rev. B (Brief Report), in pres

    On the evaluation of matrix elements in partially projected wave functions

    Full text link
    We generalize the Gutzwiller approximation scheme to the calculation of nontrivial matrix elements between the ground state and excited states. In our scheme, the normalization of the Gutzwiller wave function relative to a partially projected wave function with a single non projected site (the reservoir site) plays a key role. For the Gutzwiller projected Fermi sea, we evaluate the relative normalization both analytically and by variational Monte-Carlo (VMC). We also report VMC results for projected superconducting states that show novel oscillations in the hole density near the reservoir site

    Spontaneous breaking of the Fermi surface symmetry in the t-J model: a numerical study

    Full text link
    We present a variational Monte Carlo (VMC) study of spontaneous Fermi surface symmetry breaking in the t-J model. We find that the variational energy of a Gutzwiller projected Fermi sea is lowered by allowing for a finite asymmetry between the x- and the y-directions. However, the best variational state remains a pure superconducting state with d-wave symmetry, as long as the underlying lattice is isotropic. Our VMC results are in good overall agreement with slave boson mean field theory (SBMFT) and renormalized mean field theory (RMFT), although apparent discrepancies do show up in the half-filled limit, revealing some limitations of mean field theories. VMC and complementary RMFT calculations also confirm the SBMFT predictions that many-body interactions can enhance any anisotropy in the underlying crystal lattice. Thus, our results may be of consequence for the description of strongly correlated superconductors with an anisotropic lattice structure.Comment: 6 pages, 7 figures; final versio

    Interaction induced Fermi-surface renormalization in the t1−t2t_1{-}t_2 Hubbard model close to the Mott-Hubbard transition

    Full text link
    We investigate the nature of the interaction-driven Mott-Hubbard transition of the half-filled t1−t2t_1{-}t_2 Hubbard model in one dimension, using a full-fledged variational Monte Carlo approach including a distance-dependent Jastrow factor and backflow correlations. We present data for the evolution of the magnetic properties across the Mott-Hubbard transition and on the commensurate to incommensurate transition in the insulating state. Analyzing renormalized excitation spectra, we find that the Fermi surface renormalizes to perfect nesting right at the Mott-Hubbard transition in the insulating state, with a first-order reorganization when crossing into the conducting state.Comment: 6 pages and 7 figure

    Gamma-ray line emission from Al-26 produced by Wolf-Rayet stars

    Get PDF
    The recent satellite observations of the 1.8 MeV line from the decay of Al-26 has given a new impetus to the study of the nucleosynthesis of Al-26. The production and ejection of Al-26 by massive mass-losing stars (Of and WR stars) is discussed in the light of recent stellar models. The longitude distribution of the Al-26 gamma ray line emission produced by the galactic collection of WR stars is derived based on various estimates of their radial distribution. This longitude profile provides: (1) a specific signature of massive stars on the background of other potential Al-26 sources, as novae, supernovae, certain red giants and possibly AGB stars; and (2) a possible tool to improve the data analysis of the HEAO 3 and SMM experiments

    Bosonic resonating valence bond wave function for doped Mott insulators

    Full text link
    We propose a new class of ground states for doped Mott insulators in the electron second-quantization representation. They are obtained from a bosonic resonating valence bond (RVB) theory of the t-J model. At half filling, the ground state describes spin correlations of the S=1/2 Heisenberg model very accurately. Its spin degrees of freedom are characterized by RVB pairing of spins, the size of which decreases continuously as holes are doped into the system. Charge degrees of freedom emerge upon doping and are described by twisted holes in the RVB background. We show that the twisted holes exhibit an off diagonal long range order (ODLRO) in the pseudogap ground state, which has a finite pairing amplitude, but is short of phase coherence. Unpaired spins in such a pseudogap ground state behave as free vortices, preventing superconducting phase coherence. The existence of nodal quasiparticles is also ensured by such a hidden ODLRO in the ground state, which is non-Fermi-liquid-like in the absence of superconducting phase coherence. Two distinct types of spin excitations can also be constructed. The superconducting instability of the pseudogap ground state is discussed and a d-wave superconducting ground state is obtained. This class of pseudogap and superconducting ground states unifies antiferromagnetism, pseudogap, superconductivity, and Mott physics into a new state of matter.Comment: 28 pages, 5 figures, final version to appear in Phys. Rev.

    Attractor Metadynamics in Adapting Neural Networks

    Full text link
    Slow adaption processes, like synaptic and intrinsic plasticity, abound in the brain and shape the landscape for the neural dynamics occurring on substantially faster timescales. At any given time the network is characterized by a set of internal parameters, which are adapting continuously, albeit slowly. This set of parameters defines the number and the location of the respective adiabatic attractors. The slow evolution of network parameters hence induces an evolving attractor landscape, a process which we term attractor metadynamics. We study the nature of the metadynamics of the attractor landscape for several continuous-time autonomous model networks. We find both first- and second-order changes in the location of adiabatic attractors and argue that the study of the continuously evolving attractor landscape constitutes a powerful tool for understanding the overall development of the neural dynamics
    • …
    corecore