317 research outputs found

    The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten

    Full text link
    Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/21/2 screw dislocations in binary tungsten-transition metal alloys (W1−x_{1-x}TMx_{x}) were investigated using first principles electronic structure calculations. The periodic quadrupole approach was applied to model the structure of 1/21/2 dislocation. Alloying with transition metals was modeled using the virtual crystal approximation and the applicability of this approach was assessed by calculating the equilibrium lattice parameter and elastic constants of the tungsten alloys. Reasonable agreement was obtained with experimental data and with results obtained from the conventional supercell approach. Increasing the concentration of a transition metal from the VIIIA group, i.e. the elements in columns headed by Fe, Co and Ni, leads to reduction of the C′C^\prime elastic constant and increase of elastic anisotropy A=C44/C′C_{44}/C^\prime. Alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similar to results obtained for W1−x_{1-x}Rex_{x} alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503 (2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry, the values of the Peierls stress and barrier are reduced. The latter effect could lead to increased ductility in a tungsten-based alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any of the transition metals from the VIIIA group should have similar effect as alloying with Re.Comment: 12 pages, 8 figures, 3 table

    Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth

    Get PDF
    In this study, we investigated pre-structured (100) GaAs sample surfaces with respect to subsequent site-selective quantum dot growth. Defects occurring in the GaAs buffer layer grown after pre-structuring are attributed to insufficient cleaning of the samples prior to regrowth. Successive cleaning steps were analyzed and optimized. A UV-ozone cleaning is performed at the end of sample preparation in order to get rid of remaining organic contamination

    Molecular characterization of TCF3::PBX1 chromosomal breakpoints in acute lymphoblastic leukemia and their use for measurable residual disease assessment

    Get PDF
    The translocation t(1;19)(q23;p13) with the resulting chimeric TCF3::PBX1 gene is the third most prevalent recurrent chromosomal translocation in acute lymphoblastic leukemia and accounts for 3-5% of cases. The molecular background of this translocation has been incompletely studied, especially in adult cases. We characterized the chromosomal breakpoints of 49 patients with TCF3::PBX1 and the corresponding reciprocal PBX1::TCF3 breakpoints in 15 cases at the molecular level, thus providing an extensive molecular overview of this translocation in a well-defined study patient population. Breakpoints were found to be remarkably clustered not only in TCF3 but also in PBX1. No association with DNA repeats or putative cryptic recombination signal sequence sites was observed. A simplified detection method for breakpoint identification was developed and the feasibility of patient-specific chromosomal break sites as molecular markers for detecting measurable residual disease (MRD) was explored. A highly sensitive generic real-time PCR for MRD assessment using these breakpoint sequences was established that could serve as a useful alternative to the classical method utilizing rearranged immune gene loci. This study provides the first extensive molecular data set on the chromosomal breakpoints of the t(1;19)/TCF3::PBX1 aberration in adult ALL. Based on the obtained data a generic MRD method was developed that has several theoretical advantages, including an on average higher sensitivity and a greater stability of the molecular marker in the course of disease

    Prescriptive Business Process Monitoring for Recommending Next Best Actions

    Full text link
    Predictive business process monitoring (PBPM) techniques predict future process behaviour based on historical event log data to improve operational business processes. Concerning the next activity prediction, recent PBPM techniques use state-of-the-art deep neural networks (DNNs) to learn predictive models for producing more accurate predictions in running process instances. Even though organisations measure process performance by key performance indicators (KPIs), the DNN`s learning procedure is not directly affected by them. Therefore, the resulting next most likely activity predictions can be less beneficial in practice. Prescriptive business process monitoring (PrBPM) approaches assess predictions regarding their impact on the process performance (typically measured by KPIs) to prevent undesired process activities by raising alarms or recommending actions. However, none of these approaches recommends actual process activities as actions that are optimised according to a given KPI. We present a PrBPM technique that transforms the next most likely activities into the next best actions regarding a given KPI. Thereby, our technique uses business process simulation to ensure the control-flow conformance of the recommended actions. Based on our evaluation with two real-life event logs, we show that our technique`s next best actions can outperform next activity predictions regarding the optimisation of a KPI and the distance from the actual process instances

    Modelling avalanches in martensites

    Full text link
    Solids subject to continuous changes of temperature or mechanical load often exhibit discontinuous avalanche-like responses. For instance, avalanche dynamics have been observed during plastic deformation, fracture, domain switching in ferroic materials or martensitic transformations. The statistical analysis of avalanches reveals a very complex scenario with a distinctive lack of characteristic scales. Much effort has been devoted in the last decades to understand the origin and ubiquity of scale-free behaviour in solids and many other systems. This chapter reviews some efforts to understand the characteristics of avalanches in martensites through mathematical modelling.Comment: Chapter in the book "Avalanches in Functional Materials and Geophysics", edited by E. K. H. Salje, A. Saxena, and A. Planes. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-45612-6_

    Cardiac Effects of Hyperoxia During Resuscitation from Hemorrhagic Shock in Swine

    Get PDF
    Hyperoxia (ventilation with FIO2 = 1.0) has vasoconstrictor properties, in particular in the coronary vascular bed, and, hence, may promote cardiac dysfunction. However, we previously showed that hyperoxia attenuated myocardial injury during resuscitation from hemorrhage in swine with coronary artery disease. Therefore, we tested the hypothesis whether hyperoxia would also mitigate myocardial injury and improve heart function in the absence of chronic cardiovascular co-morbidity.After 3 hours of hemorrhage (removal of 30% of the calculated blood volume and subsequent titration of mean arterial pressure to 40mmHg) 19 anesthetized, mechanically ventilated and instrumented pigs received FIO2 = 0.3(control) or hyperoxia(FIO2 = 1.0) during the first 24 hours. Before, at the end of and every 12 hours after shock, hemodynamics, blood gases, metabolism, cytokines and cardiac function (pulmonary artery thermodilution, left ventricular pressure-conductance catheterization) were recorded. At 48 hours, cardiac tissue was harvested for western blotting, immunohistochemistry and mitochondrial respiration.Except for higher left ventricular end-diastolic pressures at 24 hours (hyperoxia 21(17;24),control 17(15;18)mmHg;p = 0.046), hyperoxia affected neither left ventricular function cardiac injury (max. Troponin I at 12 hours: hyperoxia:9(6;23),control:17(11;24)ng mL;p = 0.395), nor plasma cytokines (except for interleukin-1β: hyperoxia 10(10;10) and 10(10;10)/control 14(10;22), 12(10;15)pg mL, p = 0.023 and 0.021 at 12 and 24 hours, respectively), oxidation and nitrosative stress, and mitochondrial respiration. However, hyperoxia decreased cardiac tissue 3-nitrotyrosine formation (p < 0.001) and inducible nitric oxide synthase expression (p = 0.016). Ultimately, survival did not differ significantly either.In conclusion, in contrast to our previous study in swine with coronary artery disease, hyperoxia did not beneficially affect cardiac function or tissue injury in healthy swine, but was devoid of deleterious side effects

    The KMT2A recombinome of acute leukemias in 2023

    Get PDF
    Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival

    The KMT2A recombinome of acute leukemias in 2023

    Get PDF
    Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5’-KMT2A, two patients had a 5’-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.publishedVersionPeer reviewe
    • …
    corecore