15 research outputs found
Recommended from our members
On the formation of string cavitation inside fuel injectors
The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow
Recommended from our members
Cloud cavitation vortex shedding inside an injector nozzle
The development and collapse of cloud cavitation and its link to surface erosion within a transparent test single-orifice nozzle operating with a closed Diesel fuel hydraulic circuit, has been characterized using high-speed imaging. Data have been obtained for a range of cavitation and Reynolds numbers under fixed lift positions. Post processing of a large number of images acquired with short exposure time (1 μs) allowed the elucidation of the distinct flow phenomena associated with the highly transient two-phase flow. At the inlet of the flow orifice, the vapour cloud was found to occupy the largest part of the nozzle hole cross-section. Coherent vortical structures of a hairpin shape have been detected to onset at the closure region of this vapour cloud and shed downstream in a fully transient manner. The effect of the operating parameters on the temporal and spatial characteristics with regards to the emergence and collapse of the hairpin vortices has been quantified. It has been established that the cavitation-vortex shedding was taking place in a periodical manner, characterized by a Strouhal number