93 research outputs found
Orientational Effects and Random Mixing in 1-Alkanol + Alkanone Mixtures
1-Alkanol + alkanone systems have been investigated through the data analysis of molar excess functions,
enthalpies, isobaric heat capacities, volumes and entropies, and using the Flory model and the formalism of the concentrationconcentration
structure factor (SCC(0)). The enthalpy of the hydroxyl-carbonyl interactions has been evaluated. These
interactions are stronger in mixtures with shorter alcohols (methanol-1-butanol) and 2-propanone or 2-butanone. However,
effects related to the self-association of alcohols and to solvation between unlike molecules are of minor importance when
compared with those which arise from dipolar interactions. Physical interactions are more relevant in mixtures with longer
1-alkanols. The studied systems are characterized by large structural effects. The variation of the molar excess enthalpy with the
alcohol size along systems with a given ketone or with the alkanone size in solutions with a given alcohol are discussed in terms of
the different contributions to this excess function. Mixtures with methanol show rather large orientational effects. The random
mixing hypothesis is attained to a large extent for mixtures with 1-alkanols ≠ methanol and 2-alkanones. Steric effects and
cyclization lead to stronger orientational effects in mixtures with 3-pentanone, 4-heptanone, or cyclohexanone. The increase of
temperature weakens orientational effects. Results from SCC(0) calculations show that homocoordination is predominant and
support conclusions obtained from the Flory model.Ministerio de Ciencia e Innovación, under Project
FIS2010-1695
Synthesis and electrochemical characterization of nitrogen-doped and nitrogen–phosphorus-doped multi-walled carbon nanotubes
Nitrogen-doped and nitrogen–phosphorus-doped multi-walled carbon nanotubes (N-MWCNTs and N–PMWCNTs, respectively) were fabricated by chemical vapor deposition and characterized using scanning electron microscopy and transmission electron microscopy in combination with energy dispersive X-ray spectroscopy and Raman spectroscopy.
The electrochemical response of N-MWCNTs and N–P-MWCNTs towards ferrocyanide/ferricyanide was initially studied. The findings exhibit weakening of electrochemical response and sensitivity of nanotubes with phosphorus doping, and thus, within the composite films tested, those consist exclusively of N-MWCNTs exhibit the greatest electrocatalytic activity. N–P-MWCNT film was further applied for individual electrochemical analysis of ascorbic acid (AA), uric acid (UA), and dopamine (DA), and lower limits of detections of 11.6, 7.8, and 1.9 μM were estimated, respectively. The findings demonstrate that AA does not interfere with UA, but considerable interference of AA in analysis of DA was observed. Thus, the simultaneous analysis of AA, UA, and DA on N–P-MWCNTs appears to be restricted
Application of carbon-based quantum dots in photodynamic therapy
Photodynamic Therapy (PDT) is a non-invasive therapeutic modality that can treat a wide variety of cancer types by means of photosensitizer drug, light, and oxygen. Due to enhanced specificity and fewer side effects, PDT can be an alternative approach for cancer treatments. However, conventional photosensitizers (PSs) exhibit low selectivity, hydrophobicity, and limited photophysical properties. Nanotechnology emerges as a potential solution to these issues and improves PDT efficiency. Nanomaterials such as Carbon Quantum Dots (CQDs) and Graphene Quantum Dots (GrQDs) have been widely applied on PDT research recently, regarding their excellent photoluminescence properties, biocompatibility, as well as their hydrophilicity. The present review article summarizes the main features of PDT and carbon-based quantum dots with an emphasis on used PSs and methods for synthesis of carbon dots. Additionally, the most recent applications of CQDs and GrQDs in PDT have been extensively discussed. The main conclusion that arises is that carbon-based quantum dots seem to be a powerful tool in cancer diagnosis and treatment
- …