17,695 research outputs found

    Sensitivity of Astrophysical Observations to Gravity-Induced Wave Dispersion in Vacuo

    Get PDF
    We discuss possible signatures of quantum gravity for the propagation of light, including an energy-dependent velocity (refractive index), dispersion in velocity at a given energy, and birefringence. We also compare the sensitivities of different astrophysical observations, including BATSE data on GRB 920229, BeppoSAX data on GRB 980425, the possible HEGRA observation of GRB 920925c, and Whipple observations of the active galaxy Mrk 421. Finally, we discuss the prospective sensitivities of AMS and GLAST.Comment: LaTex, 3 page

    CMAC Trained Optimum Mid course Guidance for Tactical Flight Vehicle

    Get PDF
    This paper discusses design and validation of neural network based mid-course guidance law of a surface to air flight vehicle. In present study, initially different optimal trajectories have been generated off-line of different pursuer-evader engagements by ensuring minimum flight time, maximum terminal velocity and favorable handing over conditions for seeker based terminal guidance. These optimal trajectories have been evolved by nonlinear programming based direct method of optimisation. The kinematic information of both pursuer and evader, generated based on these trajectories have been used to train cerebellar model articulate controller (CMAC) neural network. Later for a given engagement scenario an on-line near optimal mid-course guidance law has been evolved based on output of trained network. Training has been carried out by CMAC type supervisory neural network. The tested engagement condition is within input/output training space of neural network. Seeker based homing guidance has been used for terminal phase. Complete methodology has been validated along pitch plane of pursuer-evader engagement. During mid-course phase, the guidance demand has been tracked by attitude hold autopilot and during terminal phase, the guidance demanded lateral acceleration has been tracked by acceleration autopilot. System robustness has been studied in presence of plant parameter variations and sensor noise under Monte Carlo Platform

    Cornwall-Jackiw-Tomboulis effective potential for canonical noncommutative field theories

    Full text link
    We apply the Cornwall-Jackiw-Tomboulis (CJT) formalism to the scalar λϕ4\lambda \phi^{4} theory in canonical-noncommutative spacetime. We construct the CJT effective potential and the gap equation for general values of the noncommutative parameter θμν\theta_{\mu\nu}. We observe that under the hypothesis of translational invariance, which is assumed in the effective potential construction, differently from the commutative case (θμν=0\theta_{\mu\nu}= 0), the renormalizability of the gap equation is incompatible with the renormalizability of the effective potential. We argue that our result, is consistent with previous studies suggesting that a uniform ordered phase would be inconsistent with the infrared structure of canonical noncommutative theories.Comment: 15 pages, LaTe

    Implications of observed neutrinoless double beta decay

    Get PDF
    Recently a positive indication of the neutrinoless double beta decay has been announced. We study the implications of this result taking into consideration earlier results on atmospheric neutrinos and solar neutrinos. We also include in our discussions the recent results from SNO and K2K. We point out that on the confidence level given for the double beta signal, the neutrino mass matrices are now highly constrained. All models predicting Dirac masses are ruled out and leptogenesis becomes a natural choice. Only the degenerate and the inverted hierarchical solutions are allowed for the three generation Majorana neutrinos. In both these cases we find that the radiative corrections destabilize the solutions and the LOW, VO and Just So solutions of the solar neutrinos are ruled out. For the four generation case only the inverted hierarchical scenario is allowed.Comment: 16 pages, 2 postscript figure

    The Complex Time WKB Approximation And Particle Production

    Get PDF
    The complex time WKB (CWKB) approximation has been an effective technique to understand particle production in curved as well as in flat spacetime. Earlier we obtained the standard results on particle production in time dependent gauge in various curved spacetime. In the present work we generalize the technique of CWKB to the equivalent problems in space dependent gauge. Using CWKB, we first obtain the gauge invariant result for particle production in Minkowski spacetime in strong electric field. We then carry out particle production in de-Sitter spacetime in space dependent gauge and obtain the same result that we obtained earlier in time dependent gauge. The results obtained for de-Sitter spacetime has a obvious extension to particle production in black hole spacetime. It is found that the origin of Planckian spectrum is due to repeated reflections between the turning points. As mentioned earlier, it is now explicitly shown that particle production is accompanied by rotation of currents.Comment: 12 pages, Revte

    An experimental study of Primary Cosmic Rays at the knee energy region by observation of Extensive Air Showers (EAS)

    Get PDF
    Simultaneous measurements have been made of the radial (lateral) electron density distribution and the radial muon density distribution at various measured muon energies in the range 2.5–100 GeV in vertically incident EAS in the size range 3.153104 –1.793106 (primary energy range 2.431014 –8.331015 eV) particles detected near sea level. The characteristics of these radial distributions in terms of the measured shower parameters have been determined and used to draw conclusions about the average nuclear mass of the primaries of these EAS

    Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory (PAO) has measured the spectrum and composition of the ultrahigh energy cosmic rays with unprecedented precision. We use these measurements to constrain their spectrum and composition as injected from their sources and, in turn, use these results to estimate the spectrum of cosmogenic neutrinos generated in their propagation through intergalactic space. We find that the PAO measurements can be well fit if the injected cosmic rays consist entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si) range. A mixture of protons and heavier species is also acceptable but (on the basis of existing hadronic interaction models) injection of pure light nuclei (p, He) results in unacceptable fits to the new elongation rate data. The expected spectrum of cosmogenic neutrinos can vary considerably, depending on the precise spectrum and chemical composition injected from the cosmic ray sources. In the models where heavy nuclei dominate the cosmic ray spectrum and few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can be suppressed by up to two orders of magnitude relative to the all-proton prediction, making its detection beyond the reach of current and planned neutrino telescopes. Other models consistent with the data, however, are proton-dominated with only a small (1-10%) admixture of heavy nuclei and predict an associated cosmogenic flux within the reach of upcoming experiments. Thus a detection or non-detection of cosmogenic neutrinos can assist in discriminating between these possibilities.Comment: 10 pages, 7 figure

    Frequency-dependent spin susceptibility in the two-dimensional Hubbard model

    Get PDF
    A Quantum Monte Carlo calculation of dynamical spin susceptibility in the half-filled 2D Hubbard model is presented for temperature T=0.2tT=0.2t and an intermediate on-site repulsion U=4tU=4t. Using the singular value decomposition technique we succeed in analytically continuing the Matsubara Green's function into the real frequency domain and in deriving the spectral representation for the longitudinal and transverse spin susceptibility. The simulation results, while contradicting the random-phase approximation prediction of antiferromagnetic long-range order at this temperature, are in agreement with an extension of a self-consistent renormalization approach of Moriya. The static susceptibility calculated using this technique is qualitatively consistent with the ω→0\omega \rightarrow 0 simulation results.Comment: 4 pages, Revtex, encoded figs.uu file with 3 figures enclose
    • …
    corecore