17,610 research outputs found

    Semiclassical (Quantum Field Theory) and Quantum (String) de Sitter Regimes: New Results

    Full text link
    We compute the quantum string entropy S_s(m, H) from the microscopic string density of states rho_s (m,H) of mass m in de Sitter space-time. We find for high m, a {\bf new} phase transition at the critical string temperature T_s= (1/2 pi k_B)L c^2/alpha', higher than the flat space (Hagedorn) temperature t_s. (L = c/H, the Hubble constant H acts at the transition as producing a smaller string constant alpha' and thus, a higher tension). T_s is the precise quantum dual of the semiclassical (QFT Hawking-Gibbons) de Sitter temperature T_sem = hbar c /(2\pi k_B L). We find a new formula for the full de Sitter entropy S_sem (H), as a function of the usual Bekenstein-Hawking entropy S_sem^(0)(H). For L << l_{Planck}, ie. for low H << c/l_Planck, S_{sem}^{(0)}(H) is the leading term, but for high H near c/l_Planck, a new phase transition operates and the whole entropy S_sem (H) is drastically different from the Bekenstein-Hawking entropy S_sem^(0)(H). We compute the string quantum emission cross section by a black hole in de Sitter (or asymptotically de Sitter) space-time (bhdS). For T_sem ~ bhdS << T_s, (early evaporation stage), it shows the QFT Hawking emission with temperature T_sem ~ bhdS, (semiclassical regime). For T_sem ~ bhdS near T_{s}, it exhibits a phase transition into a string de Sitter state of size L_s = l_s^2/L}, l_s= \sqrt{\hbar alpha'/c), and string de Sitter temperature T_s. Instead of featuring a single pole singularity in the temperature (Carlitz transition), it features a square root branch point (de Vega-Sanchez transition). New bounds on the black hole radius r_g emerge in the bhdS string regime: it can become r_g = L_s/2, or it can reach a more quantum value, r_g = 0.365 l_s.Comment: New original materia

    Recursive parametrization of Quark flavour mixing matrices

    Full text link
    We examine quark flavour mixing matrices for three and four generations using the recursive parametrization of U(n)U(n) and SU(n)SU(n) matrices developed by some of us in Refs.[2] and [3]. After a brief summary of the recursive parametrization, we obtain expressions for the independent rephasing invariants and also the constraints on them that arise from the requirement of mod symmetry of the flavour mixing matrix

    Semiclassical and Quantum Black Holes and their Evaporation, de Sitter and Anti-de Sitter Regimes, Gravitational and String Phase Transitions

    Full text link
    An effective string theory in physically relevant cosmological and black hole space times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square root branch point singularity in any space time dimensions. This is of the type of the de Vega - Sanchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For dSdS background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition.(iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in non-thermal pure quantum radiation (no information loss).(vi) New lower string bounds are given for the Kerr-Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical-quantum (wave-particle) duality, which is universal irrespective of any symmetry or isommetry of the space-time and of the number or the kind of space-time dimensions.Comment: review paper, no figures. to appear in Int Jour Mod Phys

    Semiclassical (QFT) and Quantum (String) anti - de Sitter Regimes: New Results

    Get PDF
    We compute the quantum string entropy S_s(m, H) from the microscopic string density of states of mass m in Anti de Sitter space-time. For high m, (high Hm -->c/\alpha'), no phase transition occurs at the Anti de Sitter string temperature T_{s} which is higher than the flat space (Hagedorn) temperature t_{s}. (the Hubble constant H acts as producing a smaller string constant and thus, a higher tension). T_s is the precise quantum dual of the semiclassical (QFT) Anti de Sitter temperature scale . We compute the quantum string emission by a black hole in Anti de Sitter space-time (bhAdS). In the early evaporation stage, it shows the QFT Hawking emission with temperature T_{sem~bhAdS}, (semiclassical regime). For T_{sem~bhAdS}--> T_{s}, it exhibits a phase transition into a Anti de Sitter string state. New string bounds on the black hole emerge in the bhAdS string regime. We find a new formula for the full (quantum regime included) Anti de Sitter entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy S_{sem}^(0). For low H (semiclassical regime), S_{sem}^(0) is the leading term but for high H (quantum regime), no phase transition operates, in contrast to de Sitter space, and the entropy S_{sem} is very different from the Bekenstein-Hawking term S_{sem}^(0).Comment: Comments 26 pages; no figure

    Semiclassical (QFT) and Quantum (String) Rotating Black Holes and their Evaporation: New Results

    Full text link
    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross section of strings by a Kerr-Newmann black hole (KNbh). It shows the black hole emission at the Hawking temperature T_{sem} in the early evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature T_ s at the last stages. New bounds on the angular momentum J and charge Q emerge in the quantum string regime. The last state of evaporation of a semiclassical KNbh is a string state of temperature T_s, mass M_s, J = 0 = Q, decaying as a quantum string into all kinds of particles.(There is naturally, no loss of information, (no paradox at all)). We compute the microscopic string entropy S_s(m, j) of mass m and spin mode j. (Besides the usual transition at T_s), we find for high j, (extremal string states) a new phase transition at a temperature T_{sj} higher than T_s. We find a new formula for the Kerr black hole entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy . For high angular momentum, (extremal J = GM^2/c), a gravitational phase transition operates and the whole entropy S_{sem} is drastically different from the Bekenstein-Hawking entropy. This new extremal black hole transition occurs at a temperature T_{sem J} higher than the Hawking temperature T_{sem}.Comment: New articl

    First-principles study of the atomic and electronic structure of the Si(111)-(5x2-Au surface reconstruction

    Full text link
    We present a systematic study of the atomic and electronic structure of the Si(111)-(5x2)-Au reconstruction using first-principles electronic structure calculations based on the density functional theory. We analyze the structural models proposed by Marks and Plass [Phys. Rev. Lett.75, 2172 (1995)], those proposed recently by Erwin [Phys. Rev. Lett.91, 206101 (2003)], and a completely new structure that was found during our structural optimizations. We study in detail the energetics and the structural and electronic properties of the different models. For the two most stable models, we also calculate the change in the surface energy as a function of the content of silicon adatoms for a realistic range of concentrations. Our new model is the energetically most favorable in the range of low adatom concentrations, while Erwin's "5x2" model becomes favorable for larger adatom concentrations. The crossing between the surface energies of both structures is found close to 1/2 adatoms per 5x2 unit cell, i.e. near the maximum adatom coverage observed in the experiments. Both models, the new structure and Erwin's "5x2" model, seem to provide a good description of many of the available experimental data, particularly of the angle-resolved photoemission measurements

    Magneto-mechanical interplay in spin-polarized point contacts

    Full text link
    We investigate the interplay between magnetic and structural dynamics in ferromagnetic atomic point contacts. In particular, we look at the effect of the atomic relaxation on the energy barrier for magnetic domain wall migration and, reversely, at the effect of the magnetic state on the mechanical forces and structural relaxation. We observe changes of the barrier height due to the atomic relaxation up to 200%, suggesting a very strong coupling between the structural and the magnetic degrees of freedom. The reverse interplay is weak, i.e. the magnetic state has little effect on the structural relaxation at equilibrium or under non-equilibrium, current-carrying conditions.Comment: 5 pages, 4 figure

    Chemical abundances of stars with brown-dwarf companions

    Full text link
    It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of α\alpha-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [Xα_\alpha/H] and [XFe_{\rm Fe}/H] peak abundances remain at 0.1\sim -0.1~dex and +0.15\sim +0.15~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, mCsinim_C \sin i, of the most-massive substellar companion in each system, and we find a maximum in α\alpha-element as well as Fe-peak abundances at mCsini1.35±0.20m_C \sin i \sim 1.35\pm 0.20 jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.Comment: Accepted for publication in Astronomy & Astrophysic
    corecore