1,100 research outputs found

    The Okun Misery Index in the European Union Countries from 2000 to 2009

    Get PDF
    The study is composed of four main parts and a summary. The first part, introduction, discusses various measures of the economic system's efficiency that are used in practice. Part two emphasises that the GDP per capita according to purchasing power parity still remains the most popular among those measures. Further, it presents the ranking of the European Union countries taking that measure into account, the research period being 1999-2009. Part three points out that it is also the level of poverty (misery) that determines the economic system's efficiency. That level can be measured by means of various indicators, among others, the so called HPI-2 index calculated by the UN. It will be the Okun misery index, however, computed as the sum of inflation and unemployment rates that will be presented as an alternative being of interest from the macroeconomic point of view. The ranking of the European Union member states according to that measure in the 2000-2004 and 2005-2009 periods will be provided in part four. The article will end in a summary containing synthetic conclusions drawn from earlier observations.Opracowanie składa się z czterech części zasadniczych i podsumowania. W punkcie pierwszym omówiono różnorodne mierniki sprawności systemu gospodarczego wykorzystywane w praktyce. W części drugiej podkreślono, iż nadal najpopularniejszym z nich jest PKB per capita według parytetu siły nabywczej. Zgodnie z tym miernikiem przedstawiono ranking państw Unii Europejskiej w latach 1999-2009. W punkcie trzecim podkreślono, że o sprawności systemu gospodarczego decyduje także poziom ubóstwa. Może być on mierzony różnymi wskaźnikami, m.in. tzw. indeksem HPI-2 obliczanym przez ONZ. Jako ciekawą z makroekonomicznego punktu widzenia alternatywę ukazano jednak miarę wskaźnika ubóstwa Okuna obliczanego poprzez zsumowanie stopy inflacji i stopy bezrobocia. Ranking państw Unii Europejskiej według tej miary w okresach 2000-2004 oraz 2005-2009 zaprezentowano w części czwartej. Całość zamknięto podsumowaniem, w którym zawarto syntetyczne wnioski z przeprowadzonych obserwacji

    Statistical mechanics of topological phase transitions in networks

    Full text link
    We provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully connected network. In our studies -- based on an exact enumeration method, Monte-Carlo simulations, and theoretical considerations -- we find a rich variety of topological phase transitions when the temperature is varied. These transitions signal singular changes in the essential features of the global structure of the network. Depending on the energy function chosen, the observed transitions can be best monitored using the order parameters Phi_s=s_{max}/M, i.e., the size of the largest connected component divided by the number of edges, or Phi_k=k_{max}/M, the largest degree in the network divided by the number of edges. If, for example the energy is chosen to be E=-s_{max}, the observed transition is analogous to the percolation phase transition of random graphs. For this choice of the energy, the phase-diagram in the [,T] plane is constructed. Single vertex energies of the form E=sum_i f(k_i), where k_i is the degree of vertex i, are also studied. Depending on the form of f(k_i), first order and continuous phase transitions can be observed. In case of f(k_i)=-(k_i+c)ln(k_i), the transition is continuous, and at the critical temperature scale-free graphs can be recovered.Comment: 12 pages, 12 figures, minor changes, added a new refernce, to appear in PR

    Multiplication law and S transform for non-hermitian random matrices

    Full text link
    We derive a multiplication law for free non-hermitian random matrices allowing for an easy reconstruction of the two-dimensional eigenvalue distribution of the product ensemble from the characteristics of the individual ensembles. We define the corresponding non-hermitian S transform being a natural generalization of the Voiculescu S transform. In addition we extend the classical hermitian S transform approach to deal with the situation when the random matrix ensemble factors have vanishing mean including the case when both of them are centered. We use planar diagrammatic techniques to derive these results.Comment: 25 pages + 11 figure

    Exotic trees

    Full text link
    We discuss the scaling properties of free branched polymers. The scaling behaviour of the model is classified by the Hausdorff dimensions for the internal geometry: d_L and d_H, and for the external one: D_L and D_H. The dimensions d_H and D_H characterize the behaviour for long distances while d_L and D_L for short distances. We show that the internal Hausdorff dimension is d_L=2 for generic and scale-free trees, contrary to d_H which is known be equal two for generic trees and to vary between two and infinity for scale-free trees. We show that the external Hausdorff dimension D_H is directly related to the internal one as D_H = \alpha d_H, where \alpha is the stability index of the embedding weights for the nearest-vertex interactions. The index is \alpha=2 for weights from the gaussian domain of attraction and 0<\alpha <2 for those from the L\'evy domain of attraction. If the dimension D of the target space is larger than D_H one finds D_L=D_H, or otherwise D_L=D. The latter result means that the fractal structure cannot develop in a target space which has too low dimension.Comment: 33 pages, 6 eps figure

    A practical solution to the sign problem in a matrix model for dynamical compactification

    Full text link
    The matrix model formulation of superstring theory offers the possibility to understand the appearance of 4d space-time from 10d as a consequence of spontaneous breaking of the SO(10) symmetry. Monte Carlo studies of this issue is technically difficult due to the so-called sign problem. We present a practical solution to this problem generalizing the factorization method proposed originally by two of the authors (K.N.A. and J.N.). Explicit Monte Carlo calculations and large-N extrapolations are performed in a simpler matrix model with similar properties, and reproduce quantitative results obtained previously by the Gaussian expansion method. Our results also confirm that the spontaneous symmetry breaking indeed occurs due to the phase of the fermion determinant, which vanishes for collapsed configurations. We clarify various generic features of this approach, which would be useful in applying it to other statistical systems with the sign problem.Comment: 44 pages, 64 figures, v2: some minor typos correcte

    Shortest paths and load scaling in scale-free trees

    Get PDF
    The average node-to-node distance of scale-free graphs depends logarithmically on N, the number of nodes, while the probability distribution function (pdf) of the distances may take various forms. Here we analyze these by considering mean-field arguments and by mapping the m=1 case of the Barabasi-Albert model into a tree with a depth-dependent branching ratio. This shows the origins of the average distance scaling and allows a demonstration of why the distribution approaches a Gaussian in the limit of N large. The load (betweenness), the number of shortest distance paths passing through any node, is discussed in the tree presentation.Comment: 8 pages, 8 figures; v2: load calculations extende

    A New Method to Estimate the Noise in Financial Correlation Matrices

    Full text link
    Financial correlation matrices measure the unsystematic correlations between stocks. Such information is important for risk management. The correlation matrices are known to be ``noise dressed''. We develop a new and alternative method to estimate this noise. To this end, we simulate certain time series and random matrices which can model financial correlations. With our approach, different correlation structures buried under this noise can be detected. Moreover, we introduce a measure for the relation between noise and correlations. Our method is based on a power mapping which efficiently suppresses the noise. Neither further data processing nor additional input is needed.Comment: 25 pages, 8 figure

    Subgraphs in random networks

    Full text link
    Understanding the subgraph distribution in random networks is important for modelling complex systems. In classic Erdos networks, which exhibit a Poissonian degree distribution, the number of appearances of a subgraph G with n nodes and g edges scales with network size as \mean{G} ~ N^{n-g}. However, many natural networks have a non-Poissonian degree distribution. Here we present approximate equations for the average number of subgraphs in an ensemble of random sparse directed networks, characterized by an arbitrary degree sequence. We find new scaling rules for the commonly occurring case of directed scale-free networks, in which the outgoing degree distribution scales as P(k) ~ k^{-\gamma}. Considering the power exponent of the degree distribution, \gamma, as a control parameter, we show that random networks exhibit transitions between three regimes. In each regime the subgraph number of appearances follows a different scaling law, \mean{G} ~ N^{\alpha}, where \alpha=n-g+s-1 for \gamma<2, \alpha=n-g+s+1-\gamma for 2<\gamma<\gamma_c, and \alpha=n-g for \gamma>\gamma_c, s is the maximal outdegree in the subgraph, and \gamma_c=s+1. We find that certain subgraphs appear much more frequently than in Erdos networks. These results are in very good agreement with numerical simulations. This has implications for detecting network motifs, subgraphs that occur in natural networks significantly more than in their randomized counterparts.Comment: 8 pages, 5 figure

    A non-perturbative study of 4d U(1) non-commutative gauge theory -- the fate of one-loop instability

    Get PDF
    Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d=2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ\theta, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ\theta is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking.Comment: 29 pages, 23 figures, references adde
    corecore