15,085 research outputs found

    Communication Satellite Output Devices

    Get PDF
    Solid state and vacuum tube output devices for communication satellite

    Optical investigations of noncrystalline semiconductors

    Get PDF
    Three areas of investigation into the properties of amorphous silicon and boron are reported: (1) optical properties of elemental amorphous semiconductors; (2) Mossbauer studies of disordered systems; and (3) theoretical aspects of disordered semiconductors

    Top-down platform for strong antenna-emitter interactions

    Get PDF

    Remote sensing of tropical tropopause layer radiation balance using A-train measurements

    Get PDF
    Determining the level of zero net radiative heating (LZH) is critical to understanding parcel trajectory in the Tropical Tropopause Layer (TTL) and associated stratospheric hydration processes. Previous studies of the TTL radiative balance have focused on using radiosonde data, but remote sensing measurements from polar-orbiting satellites may provide the relevant horizontal and vertical information for assessing TTL solar heating and infrared cooling rates, especially across the Pacific Ocean. CloudSat provides a considerable amount of vertical information about the distribution of cloud properties relevant to heating rate analysis. The ability of CloudSat measurements and ancillary information to constrain LZH is explored. We employ formal error propagation analysis for derived heating rate uncertainty given the CloudSat cloud property retrieval algorithms. Estimation of the LZH to within approximately 0.5 to 1 km is achievable with CloudSat, but it has a low-altitude bias because the radar is unable to detect thin cirrus. This can be remedied with the proper utilization of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar backscatter information. By utilizing an orbital simulation with the GISS data set, we explore the representativeness of non-cross-track scanning active sounders in terms of describing the LZH distribution. In order to supplement CloudSat, we explore the ability of Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to constrain LZH and find that these passive sounders are useful where the cloud top height does not exceed 7 km. The spatiotemporal distributions of LZH derived from CloudSat and CALIPSO measurements are presented which suggest that thin cirrus have a limited effect on LZH mean values but affect LZH variability

    Elemental surface analysis at ambient pressure by electron-induced x-ray fluorescence

    Get PDF
    The development of a portable surface elemental analysis tool, based on the excitation of characteristic x rays from samples at ambient pressure with a focused electron beam is described. This instrument relies on the use of a thin electron transmissive membrane to isolate the vacuum of the electron source from the ambient atmosphere. The major attributes of this instrument include rapid (several minutes) spectrum acquisition, nondestructive evaluation of elemental composition, no sample preparation, and high-to-medium (several hundreds µm) spatial resolution. The instrument proof-of-principle has been demonstrated in a laboratory setup by obtaining energy dispersive x-ray spectra from metal and mineral samples

    Reconnecting Magnetic Flux Tubes as a Source of In Situ Acceleration in Extragalactic Radio Sources

    Full text link
    Many extended extragalactic radio sources require a local {\it in situ\/} acceleration mechanism for electrons, in part because the synchrotron lifetimes are shorter than the bulk travel time across the emitting regions. If the magnetic field in these sources is localized in flux tubes, reconnection may occur between regions of plasma \be (ratio of particle to magnetic pressure) <<1<<1, even though β\beta averaged over the plasma volume may be \gsim 1. Reconnection in low β\beta regions is most favorable to acceleration from reconnection shocks. The reconnection X-point regions may provide the injection electrons for their subsequent non-thermal shock acceleration to distributions reasonably consistent with observed spectra. Flux tube reconnection might therefore be able to provide in situin\ situ acceleration required by large scale jets and lobes.Comment: 14 pages, plain TeX, accepted to Ap.J.Let

    What Is The Neon Abundance Of The Sun?

    Full text link
    We have evolved a series of thirteen complete solar models that utilize different assumed heavy element compositions. Models that are based upon the heavy element abundances recently determined by Asplund, Grevesse, and Sauval (2005) are inconsistent with helioseismological measurements. However, models in which the neon abundance is increased by 0.4-0.5 dex to log N(Ne) = 8.29 +- 0.05 (on the scale in which log N(H) = 12) are consistent with the helioseismological measurements even though the other heavy element abundances are in agreement with the determinations of Asplund et al. (2005). These results sharpen and strengthen an earlier study by Antia and Basu (2005). The predicted solar neutrino fluxes are affected by the uncertainties in the composition by less than their 1sigma theoretical uncertainties.Comment: Accepted for publication by ApJ. Minor editorial change
    • …
    corecore