1,279 research outputs found

    Randall-Sundrum black holes and strange stars

    Get PDF
    It has recently been suggested that the existence of bare strange stars is incompatible with low scale gravity scenarios. It has been claimed that in such models, high energy neutrinos incident on the surface of a bare strange star would lead to catastrophic black hole growth. We point out that for the flat large extra dimensional case, the parts of parameter space which give rise to such growth are ruled out by other methods. We then go on to show in detail how black holes evolve in the the Randall-Sundrum two brane scenario where the extra dimensions are curved. We find that catastrophic black hole growth does not occur in this situation either. We also present some general expressions for the growth of five dimensional black holes in dense media.Comment: 16 pages, more numerics has lead to different path to same conclusion. Accepted in PR

    Observables in 3d spinfoam quantum gravity with fermions

    Full text link
    We study expectation values of observables in three-dimensional spinfoam quantum gravity coupled to Dirac fermions. We revisit the model introduced by one of the authors and extend it to the case of massless fermionic fields. We introduce observables, analyse their symmetries and the corresponding proper gauge fixing. The Berezin integral over the fermionic fields is performed and the fermionic observables are expanded in open paths and closed loops associated to pure quantum gravity observables. We obtain the vertex amplitudes for gauge-invariant observables, while the expectation values of gauge-variant observables, such as the fermion propagator, are given by the evaluation of particular spin networks.Comment: 32 pages, many diagrams, uses psfrag

    Large extra dimensions, the galaxy power spectrum and the end of inflation

    Get PDF
    We consider the production of gravitational KK modes via cosmological photon-photon and electron-positron annihilation in models with large factorisable extra dimensions. We place constraints on this production using recent results from a joint analysis of the power spectra of the 2dF Galaxy Redshift Survey (2dFGS) and the cosmic microwave background (CMB) anisotropies. We obtain a more accurate upper limit for the temperature corresponding to matter-radiation equality and show that, even for the case of 6 extra dimensions and a fundamental scale of 1 TeV, a period of inflation is required that ends at a temperature much lower than that of the QCD phase transition.Comment: 12 pages, 2 figures, hadronic branching+typos corrected,accepted in JHE

    Spatial Modulation Microscopy for Real-Time Imaging of Plasmonic Nanoparticles and Cells

    Full text link
    Spatial modulation microscopy is a technique originally developed for quantitative spectroscopy of individual nano-objects. Here, a parallel implementation of the spatial modulation microscopy technique is demonstrated based on a line detector capable of demodulation at kHz frequencies. The capabilities of the imaging system are shown using an array of plasmonic nanoantennas and dendritic cells incubated with gold nanoparticles.Comment: 3 pages, 4 figure

    Dynamics of a large extra dimension inspired hybrid inflation model

    Get PDF
    In low scale quantum gravity scenarios the fundamental scale of nature can be as low as TeV, in order to address the naturalness of the electroweak scale. A number of difficulties arise in constructing specific models; stabilisation of the radius of the extra dimensions, avoidance of overproduction of Kaluza Klein modes, achieving successful baryogenesis and production of a close to scale-invariant spectrum of density perturbations with the correct amplitude. We examine in detail the dynamics, including radion stabilisation, of a hybrid inflation model that has been proposed in order to address these difficulties, where the inflaton is a gauge singlet residing in the bulk. We find that for a low fundamental scale the phase transition, which in standard four dimensional hybrid models usually ends inflation, is slow and there is second phase of inflation lasting for a large number of e-foldings. The density perturbations on cosmologically interesting scales exit the Hubble radius during this second phase of inflation, and we find that their amplitude is far smaller than is required. We find that the duration of the second phase of inflation can be short, so that cosmologically interesting scales exit the Hubble radius prior to the phase transition, and the density perturbations have the correct amplitude, only if the fundamental scale takes an intermediate value. Finally we comment briefly on the implications of an intermediate fundamental scale for the production of primordial black holes and baryogenesis.Comment: 9 pages, 2 figures version to appear in Phys. Rev. D, additional references and minor changes to discussio

    Beyond "the Relationship between the Individual and Society": broadening and deepening relational thinking in group analysis

    Get PDF
    The question of ‘the relationship between the individual and society’ has troubled group analysis since its inception. This paper offers a reading of Foulkes that highlights the emergent, yet evanescent, psychosocial ontology in his writings, and argues for the development of a truly psychosocial group analysis, which moves beyond the individual/society dualism. It argues for a shift towards a language of relationality, and proposes new theoretical resources for such a move from relational sociology, relational psychoanalysis and the ‘matrixial thinking’ of Bracha Ettinger which would broaden and deepen group analytic understandings of relationality

    Cosmological Constraints on Bulk Neutrinos

    Full text link
    Recent models invoking extra spacelike dimensions inhabited by (bulk) neutrinos are shown to have significant cosmological effects if the size of the largest extra dimension is R > 1 fm. We consider effects on cosmic microwave background anisotropies, big bang nucleosynthesis, deuterium and Li-6 photoproduction, diffuse photon backgrounds, and structure formation. The resulting constraints can be stronger than either bulk graviton overproduction constraints or laboratory constraints.Comment: matches published versio
    corecore