60 research outputs found

    NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo

    Get PDF
    Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Integrative veterinary medical education and consensus guidelines for an integrative veterinary medicine curriculum within veterinary colleges

    No full text
    Integrative veterinary medicine (IVM) describes the combination of complementary and alternative therapies with conventional care and is guided by the best available evidence. Veterinarians frequently encounter questions about complementary and alternative veterinary medicine (CAVM) in practice, and the general public has demonstrated increased interest in these areas for both human and animal health. Consequently, veterinary students should receive adequate exposure to the principles, theories, and current knowledge supporting or refuting such techniques. A proposed curriculum guideline would broadly introduce students to the objective evaluation of new veterinary treatments while increasing their preparation for responding to questions about IVM in clinical practice. Such a course should be evidence-based, unbiased, and unaffiliated with any particular CAVM advocacy or training group. All IVM courses require routine updating as new information becomes available. Controversies regarding IVM and CAVM must be addressed within the course and throughout the entire curriculum. Instructional honesty regarding the uncertainties in this emerging field is critical. Increased training of future veterinary professionals in IVM may produce an openness to new ideas that characterizes the scientific method and a willingness to pursue and incorporate evidence-based medicine in clinical practice with all therapies, including those presently regarded as integrative, complementary, or alternative

    Integrative veterinary medical education and consensus guidelines for an integrative veterinary medicine curriculum within veterinary colleges

    Get PDF
    Integrative veterinary medicine (IVM) describes the combination of complementary and alternative therapies with conventional care and is guided by the best available evidence. Veterinarians frequently encounter questions about complementary and alternative veterinary medicine (CAVM) in practice, and the general public has demonstrated increased interest in these areas for both human and animal health. Consequently, veterinary students should receive adequate exposure to the principles, theories, and current knowledge supporting or refuting such techniques. A proposed curriculum guideline would broadly introduce students to the objective evaluation of new veterinary treatments while increasing their preparation for responding to questions about IVM in clinical practice. Such a course should be evidence-based, unbiased, and unaffiliated with any particular CAVM advocacy or training group. All IVM courses require routine updating as new information becomes available. Controversies regarding IVM and CAVM must be addressed within the course and throughout the entire curriculum. Instructional honesty regarding the uncertainties in this emerging field is critical. Increased training of future veterinary professionals in IVM may produce an openness to new ideas that characterizes the scientific method and a willingness to pursue and incorporate evidence-based medicine in clinical practice with all therapies, including those presently regarded as integrative, complementary, or alternative
    corecore