506 research outputs found

    The interplay of gas, dust, and magnetorotational instability in magnetized protoplanetary disks

    Get PDF
    The rich diversity of exoplanets discovered in various physical environments clearly shows that planet formation is an efficient process with multiple outcomes. To un- derstand the emergence of newborn planets, one can rewind the clock of planetary systems by investigating the formation and evolution of their natal environment, the so-called protoplanetary disks. In the core accretion scenario, rocky planets such as the Earth are thought to be formed from cosmic dust particles that grow into pebbles and planetesimals, the building blocks of planets, later assembling to- gether. An intricate puzzle in this theory is how exactly these building blocks are formed and kept long enough in the natal protoplanetary disk. Protoplanetary disks are weakly magnetized accretion disks that are subject to the magnetorotational instability (MRI). It is to date one of the main candidates for explaining their turbulence and angular momentum transport. The nonideal magnetohydrodynamic effects prevent the MRI from operating everywhere in the protoplanetary disk, leading to MRI active regions with high turbulence and non- MRI regions with low turbulence. It has been hypothesized that these variations in the disk turbulence can lead to pressure maxima where dust particles can be trapped. In these so-called dust traps, dust particles can grow efficiently into peb- bles and potentially planetesimals. Yet, it is still an open question how this MRI- powered mechanism shapes the secular evolution of protoplanetary disks, and how it is involved in the first steps of planet formation. It is because the interplay of gas evolution, dust evolution (dynamics and grain growth processes combined) and MRI-driven turbulence over millions of years has never been investigated. The central goal of this thesis is to bridge the gap in the core accretion scenario of planet formation by building the very first unified disk evolution framework that captures self-consistently this interplay. The unique approach adopted in this thesis leads to an exciting new pathway for the generation of spontaneous dust traps everywhere in the protoplanetary disk, which can be potential birth-sites for planets by forming and keeping their necessary building blocks

    Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay

    Full text link
    Problems related to unsaturated soils are frequently encountered in geotechnical or environmental engineering works. In most cases, for the purpose of simplicity, the problems are studied by considering the suction effects on volume change or shear strength under isothermal conditions. Under isothermal condition, very often, a temperature independent water retention curve is considered in the analysis, which is obviously a simplification. When the temperature changes are too significant to be neglected, it is necessary to account for the thermal effects. In this paper, a method for controlling suction using the vapour equilibrium technique at different temperatures is presented. First, calibration of various saturated saline solutions was carried out from temperature of 20 degrees C to 60 degrees C. A mirror psychrometer was used for the measurement of relative humidity generated by saturated saline solutions at different temperatures. The results obtained are in good agreement with the data from the literature. This information was then used to determine the water retention properties of MX80 clay, which showed that the retention curve is shifting down with increasing of temperature

    The impact of dust evolution on the dead zone outer edge in magnetized protoplanetary disks

    Get PDF
    [Abridged] Aims. We provide an important step toward a better understanding of the magnetorotational instability (MRI)-dust coevolution in protoplanetary disks by presenting a proof of concept that dust evolution ultimately plays a crucial role in the MRI activity. Methods. First, we study how a fixed power-law dust size distribution with varying parameters impacts the MRI activity, especially the steady-state MRI-driven accretion, by employing and improving our previous 1+1D MRI-driven turbulence model. Second, we relax the steady-state accretion assumption in this disk accretion model, and partially couple it to a dust evolution model in order to investigate how the evolution of dust (dynamics and grain growth processes combined) and MRI-driven accretion are intertwined on million-year timescales. Results. Dust coagulation and settling lead to a higher gas ionization degree in the protoplanetary disk, resulting in stronger MRI-driven turbulence as well as a more compact dead zone. On the other hand, fragmentation has an opposite effect because it replenishes the disk in small dust particles. Since the dust content of the disk decreases over million years of evolution due to radial drift, the MRI-driven turbulence overall becomes stronger and the dead zone more compact until the disk dust-gas mixture eventually behaves as a grain-free plasma. Furthermore, our results show that dust evolution alone does not lead to a complete reactivation of the dead zone. Conclusions. The MRI activity evolution (hence the temporal evolution of the MRI-induced α\alpha-parameter) is controlled by dust evolution and occurs on a timescale of local dust growth, as long as there is enough dust particles in the disk to dominate the recombination process for the ionization chemistry. Once it is no longer the case, it is expected to be controlled by gas evolution and occurs on a viscous evolution timescale.Comment: 23 pages, 13 figures, Accepted for publication in A&

    Testing surfactants as additives for clay improvement: compaction and suction effects

    Get PDF
    Environmental Geotechnics (Joint TC106-TC215 Session)This paper presents an exploratory study on surfactants as additives to improve soil properties. It is hypothesized that surfactant molecules populate the air-water interfaces reducing surface tension and suction thus allowing a control of the mechanical response of the soil. Suction measurements by means of a high suction tensiometer, compaction tests and Atterberg limits were conducted in mixtures of sand and kaolin, with and without a surfactant solution. The results revealed a prominent effect on suction, but to a lesser extent on the Atterberg limits and compaction behavior (the maximum dry density). This targeted effect of the surfactants suggests its molecules populate, not only the air-water interfaces decreasing surface tension, but may be adsorbing to the clay particles and forming micelles in the pore water as well. Therefore the interplay between the three may influence the soil behavior.published_or_final_versio

    Impact of DOTA Conjugation on Pharmacokinetics and Immunoreactivity of [177Lu]Lu-1C1m-Fc, an Anti TEM-1 Fusion Protein Antibody in a TEM-1 Positive Tumor Mouse Model.

    Get PDF
    1C1m-Fc, an anti-tumor endothelial marker 1 (TEM-1) scFv-Fc fusion protein antibody, was previously successfully radiolabeled with <sup>177</sup> Lu. TEM-1 specific tumor uptake was observed together with a non-saturation dependent liver uptake that could be related to the number of dodecane tetraacetic acid (DOTA) chelator per 1C1m-Fc. The objective of this study was to verify this hypothesis and to find the best DOTA per 1C1m-Fc ratio for theranostic applications. 1C1m-Fc was conjugated with six concentrations of DOTA. High-pressure liquid chromatography, mass spectrometry, immunoreactivity assessment, and biodistribution studies in mice bearing TEM-1 positive tumors were performed. A multi-compartment pharmacokinetic model was used to fit the data and a global pharmacokinetic model was developed to illustrate the effect of liver capture and immunoreactivity loss. Organ absorbed doses in mice were calculated from biodistribution results. A loss of immunoreactivity was observed with the highest DOTA per 1C1m-Fc ratio. Except for the spleen and bone, an increase of DOTA per 1C1m-Fc ratio resulted in an increase of liver uptake and absorbed dose and a decrease of uptake in tumor and other tissues. Pharmacokinetic models correlated these results. The number of DOTA per antibody played a determining role in tumor targeting. One DOTA per 1C1m-Fc gave the best pharmacokinetic behavior for a future translation of [ <sup>177</sup> Lu]Lu-1C1m-Fc in patients

    Zero-Emission Regional Aviation in Sweden

    Get PDF
    Presented at the 33rd ICAS Congress, Sweden (2022).Regional air operations, which can be defined as the transportation of passengers using smaller aircraft over short distances, have been overlooked in recent years by airlines focusing on high volume and profitable routes between large airports. Despite this shift of focus, the airport infrastructure still exists in many smaller communities between which demand for air travel exists. The emergence of new air vehicles designed for shorter routes could stimulate efficient and profitable operations, especially if they leverage currently underutilized and paid-for airports. However, new regional air operations need to be sustainable to be successful in a world striving for a carbon-neutral future, especially since air travel over short distances can be substituted by other means of transportation with a smaller environmental footprint such as cars, trains, or buses. Many different paths are envisioned to reach zero-emission goals. These range from technology advancements to new powertrain configurations, and from new transportation policies to new emission offsetting schemes. It is however not clear how these different paths interact and how solutions could be optimally combined. Analyses are therefore required to estimate future demand for air travel and to assess the feasibility of zero-emission regional aviation with the objective to support decision-making about viable and sustainable paths for new regional air operations. The developed modeling environment is implemented in Sweden and allows for an environmental assessment of various scenarios. Significant untapped demand is uncovered between smaller markets, and given fuel and energy consumption for these operations, it is likely that sustainable advanced regional air mobility will be possible in Sweden provided technology transitions can be made

    Investigating the microbial ecology of coastal hotspots of marine nitrogen fixation in the western North Atlantic

    Get PDF
    Variation in the microbial cycling of nutrients and carbon in the ocean is an emergent property of complex planktonic communities. While recent findings have considerably expanded our understanding of the diversity and distribution of nitrogen (N2) fixing marine diazotrophs, knowledge gaps remain regarding ecological interactions between diazotrophs and other community members. Using quantitative 16S and 18S V4 rDNA amplicon sequencing, we surveyed eukaryotic and prokaryotic microbial communities from samples collected in August 2016 and 2017 across the Western North Atlantic. Leveraging and significantly expanding an earlier published 2015 molecular dataset, we examined microbial community structure and ecological co-occurrence relationships associated with intense hotspots of N2 fixation previously reported at sites off the Southern New England Shelf and Mid-Atlantic Bight. Overall, we observed a negative relationship between eukaryotic diversity and both N2 fixation and net community production (NCP). Maximum N2 fixation rates occurred at sites with high abundances of mixotrophic stramenopiles, notably Chrysophyceae. Network analysis revealed such stramenopiles to be keystone taxa alongside the haptophyte diazotroph host Braarudosphaera bigelowii and chlorophytes. Our findings highlight an intriguing relationship between marine stramenopiles and high N2 fixation coastal sites

    Direct measurement of the upper critical field in a cuprate superconductor

    Get PDF
    The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates.Comment: to appear in Nature Communications; Supplementary Information file available upon reques
    corecore