4,833 research outputs found
Model tests of cluster separability in relativistic quantum mechanics
A relativistically invariant quantum theory first advanced by Bakamjian and
Thomas has proven very useful in modeling few-body systems. For three particles
or more, this approach is known formally to fail the constraint of cluster
separability, whereby symmetries and conservation laws that hold for a system
of particles also hold for isolated subsystems. Cluster separability can be
restored by means of a recursive construction using unitary transformations,
but implementation is difficult in practice, and the quantitative extent to
which the Bakamjian-Thomas approach violates cluster separability has never
been tested. This paper provides such a test by means of a model of a scalar
probe in a three-particle system for which (1) it is simple enough that there
is a straightforward solution that satisfies Poincar\'e invariance and cluster
separability, and (2) one can also apply the Bakamjian-Thomas approach. The
difference between these calculations provides a measure of the size of the
corrections from the Sokolov construction that are needed to restore cluster
properties. Our estimates suggest that, in models based on nucleon degrees of
freedom, the corrections that restore cluster properties are too small to
effect calculations of observables.Comment: 13 pages, 15 figure
Periods of activity cycles in late-type stars
The mean magnetic field dynamo theory is utilized to obtain the qualitative dependence of the period of activity on the angular velocity of rotation for stars with sufficiently extensive convective shells. The dependence of the cycle period on the spectral class is also discussed
Phase Transitions in liquid Helium 3
The phase transitions of liquid Helium 3 are described by truncations of an
exact nonperturbative renormalization group equation. The location of the first
order transition lines and the jump in the order parameter are computed
quantitatively. At the triple point we find indications for partially universal
behaviour. We suggest experiments that could help to determine the effective
interactions between fermion pairs.Comment: 4 pages, 6 figures, LaTe
Comment on the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics
We discuss the scattering equivalence of the generalized Bakamjian-Thomas
construction of dynamical representations of the Poincar\'e group in all of
Dirac's forms of dynamics. The equivalence was established by Sokolov in the
context of proving that the equivalence holds for models that satisfy cluster
separability. The generalized Bakamjian Thomas construction is used in most
applications, even though it only satisfies cluster properties for systems of
less than four particles. Different forms of dynamics are related by unitary
transformations that remove interactions from some infinitesimal generators and
introduce them to other generators. These unitary transformation must be
interaction dependent, because they can be applied to a non-interacting
generator and produce an interacting generator. This suggests that these
transformations can generate complex many-body forces when used in many-body
problems. It turns out that this is not the case. In all cases of interest the
result of applying the unitary scattering equivalence results in
representations that have simple relations, even though the unitary
transformations are dynamical. This applies to many-body models as well as
models with particle production. In all cases no new many-body operators are
generated by the unitary scattering equivalences relating the different forms
of dynamics. This makes it clear that the various calculations used in
applications that emphasize one form of the dynamics over another are
equivalent. Furthermore, explicit representations of the equivalent dynamical
models in any form of dynamics are easily constructed. Where differences do
appear is when electromagnetic probes are treated in the one-photon exchange
approximation. This approximation is different in each of Dirac's forms of
dynamics.Comment: 6 pages, no figure
Theoretical study of hydrogen bonding and proton transfer in the ground and lowest excited singlet states of tropolone
Theoretical models of hydrogen bonding and proton transfer in the ground (S0) and lowest excited ππ∗ singlet (S1) states of tropolone are developed in terms of the localized OH...O fragment model and ab initio three‐dimensional potential energy surfaces (PESs). The PESs for proton transfer in the S0 and S1 states are calculated using ab initio SCF and CIS methods, respectively, with a 6–31G basis set which includes polarization functions on the atoms involved in the internal H bond. The Schrödinger equation for nuclear vibrations is solved numerically using adiabatic separation of the variables. The calculated values for the S0 state (geometry, relaxed barrier height, vibrational frequencies, tunnel splittings and H/D isotope effects) agree fairly well with available experimental and theoretical data. The calculated data for the S1 state reproduce the principal experimental trends, established for S1←S0 excitation in tropolone, but are less successful with other features of the dynamics of the excited state, e.g., the comparatively large value of vibrationless level tunnel splitting and its irregular increase with O...O excitation in S1. In order to overcome these discrepancies, a model 2‐D PES is constructed by fitting an analytical approximation of the CIS calculation to the experimental vibrationless level tunnel splitting and O...O stretch frequency of tropolone–OH. It is found that the specifics of the proton transfer in the S1 state are determined by a relatively low barrier (only one doublet of the OH stretch lies under the barrier peak). Bending vibrations play a minor role in modulation of the proton transfer barrier, so correct description of tunnel splitting of the proton stretch levels in both electronic states can be obtained in terms of the two‐dimensional stretching model, which includes O...O and O–H stretching vibration coordinates only. © 1994 American Institute of Physics
Hyperfine Level Splitting for Hydrogen-Like Ions due to Rotation-Spin Coupling
The theoretical aspects of spin-rotation coupling are presented. The approach
is based on the general covariance principle. It is shown that the
gyrogravitational ratio of the bare spin-1/2 and the spin-1 particles is equal
unity. That is why spin couples with rotation as an ordinary angular momentum.
This result is the rigorous substantiation of the cranking model. To observe
the phenomenon, the experiment with hydrogen-like ions in a storage ring is
suggested. It is found that the splitting of the
hyperfine state of the and ions
circulating in the storage ring ESR in Darmstadt along a helical trajectory is
about 4.5 MHz. We argue that such splitting can be experimentally determined by
means of the ionic interferometry.Comment: 6 pages, final versio
- …