38,937 research outputs found

    SIMLA: Simulating laser-particle interactions via classical and quantum electrodynamics

    Full text link
    We present the Fortran code SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. This can be done classically via the Landau-Lifshitz equation, or alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo type routines. Multiple laser fields can be included in the simulation and the propagation direction, beam shape (plane wave, focussed paraxial, constant crossed, or constant magnetic), and time envelope of each can be independently specified.Comment: Submitted to Comp. Phys. Comm. The associated computer program and corresponding manual will be made available on the CPC librar

    Transverse spreading of electrons in high-intensity laser fields

    Get PDF
    We show that for collisions of electrons with a high-intensity laser, discrete photon emissions introduce a transverse beam spread which is distinct from that due to classical (or beam shape) effects. Via numerical simulations, we show that this quantum induced transverse momentum gain of the electron is manifest in collisions with a realistic laser pulse of intensity within reach of current technology, and we propose it as a measurable signature of strong-field quantum electrodynamics.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review Letter

    A sub-regional management framework for South Pacific longline fisheries

    Get PDF
    The principal objective of this study was to determine if additional net benefits can be derived from the sub-regional longline fishery by the introduction of a new management agreement that would centre on the provision of licensing arrangements that would allow access by eligible longline vessels to multiple Exclusive Economic Zones, i.e. Multi-zone Access. [90pp.

    Anisotropic higher derivative gravity and inflationary universe

    Get PDF
    Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.Comment: 9 page

    Potential applications of digital, visible, and infrared data from geostationary environmental satellites

    Get PDF
    An hourly, digital data base from the Visible/Infrared Spin-Scan Radiometer (VISSR) instrument on the GOES-1 and SMS-2 geostationary satellites is described. Several examples of developmental applications of these quantitative digital data are presented. These include a review of recent attempts to develop products that are of use to meteorologists who provide services to aviation, agriculture, forestry, hydrology, oceanography, and climatology. The sample products include high resolution thermal gradients of land and ocean surfaces, thermal change analyses, fruit frost/freeze application, cloud-top altitude analysis, analysis of hurricane characteristics, and analyses of solar insolation

    D-Brane Interactions in a Gravitational Shock Wave Background

    Full text link
    We study D-branes in the background of a gravitational shock wave. We consider the case of parallel D-branes located on opposite sides with respect to the shock wave. Their interaction is studied by evaluating the cylinder diagram using the boundary states technique. Boundary states are defined at each D-brane and their scalar product is evaluated after propagation through the shock wave. Taking the limit where the gravitational shock wave vanishes we show that the amplitude evaluated is consistent with the flat space-time result.Comment: To be published in Modern Physics Letters A, revised version with references added, 12 page

    The anomaly-free quantization of two-dimensional relativistic string. I

    Get PDF
    An anomaly-free quantum theory of a relativistic string is constructed in two-dimensional space-time. The states of the string are found to be similar to the states of a massless chiral quantum particle. This result is obtained by generalizing the concept of an ``operator'' in quantum field theory.Comment: LaTeX, 19 pages, no figure

    Probing the mass function of halo dark matter via microlensing

    Get PDF
    The simplest interpretation of the microlensing events observed towards the Large Magellanic Clouds is that approximately half of the mass of the Milky Way halo is in the form of MAssive Compact Halo Objects with M0.5MM \sim 0.5 M_{\odot}. It is not possible, due to limits from star counts and chemical abundance arguments, for faint stars or white dwarves to comprise such a large fraction of the halo mass. This leads to the consideration of more exotic lens candidates, such as primordial black holes, or alternative lens locations. If the lenses are located in the halo of the Milky Way, then constraining their mass function will shed light on their nature. Using the current microlensing data we find, for four halo models, the best fit parameters for delta-function, primordial black hole and various power law mass functions. The best fit primordial black hole mass functions, despite having significant finite width, have likelihoods which are similar to, and for one particular halo model greater than, those of the best fit delta functions . We then use Monte Carlo simulations to investigate the number of microlensing events necessary to determine whether the MACHO mass function has significant finite width. If the correct halo model is known, then \sim 500 microlensing events will be sufficient, and will also allow determination of the mass function parameters to 5\sim 5%.Comment: 28 pages including 14 figures, version to appear in ApJ, minor changes to discussio

    The Theory of a Quantum Noncanonical Field in Curved Spacetimes

    Full text link
    Much attention has been recently devoted to the possibility that quantum gravity effects could lead to departures from Special Relativity in the form of a deformed Poincar\`e algebra. These proposals go generically under the name of Doubly or Deformed Special Relativity (DSR). In this article we further explore a recently proposed class of quantum field theories, involving noncanonically commuting complex scalar fields, which have been shown to entail a DSR-like symmetry. An open issue for such theories is whether the DSR-like symmetry has to be taken as a physically relevant symmetry, or if in fact the "true" symmetries of the theory are just rotations and translations while boost invariance has to be considered broken. We analyze here this issue by extending the known results to curved spacetime under both of the previous assumptions. We show that if the symmetry of the free theory is taken to be a DSR-like realization of the Poincar\'e symmetry, then it is not possible to render such a symmetry a gauge symmetry of the curved physical spacetime. However, it is possible to introduce an auxiliary spacetime which allows to describe the theory as a standard quantum field theory in curved spacetime. Alternatively, taking the point of view that the noncanonical commutation of the fields actually implies a breakdown of boost invariance, the physical spacetime manifold has to be foliated in surfaces of simultaneity and the field theory can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure

    Coulomb screening in mesoscopic noise: a kinetic approach

    Full text link
    Coulomb screening, together with degeneracy, is characteristic of the metallic electron gas. While there is little trace of its effects in transport and noise in the bulk, at mesoscopic scales the electronic fluctuations start to show appreciable Coulomb correlations. Within a strictly standard Boltzmann and Fermi-liquid framework, we analyze these phenomena and their relation to the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two distinct screening mechanisms for mesoscopic fluctuations. One is the self-consistent response of the contact potential in a non-uniform system. The other couples to scattering, and is an exclusively non-equilibrium process. Contact-potential effects renormalize all thermal fluctuations, at all scales. Collisional effects are relatively short-ranged and modify non-equilibrium noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication in J. Phys.: Cond. Ma
    corecore