1,890 research outputs found

    Debatable land: an essay on the relationship between English and Scottish criminal law

    Get PDF
    This article proposes that a better understanding of the identity of Scots criminal law can be developed through an analysis of the similarities between English and Scots law rather than by concentrating on the differences. It argues that historically there are striking similarities between the two laws which have been overlooked or ignoredfor various reasons. It goes on to argue that many ofthe current differences between the two laws can be explained in terms of contemporary academic and institutional conditions, and that these offer a betterfoundation on which to construct a principled theoretical understanding of Scots criminal law

    Antibody and B cell responses to Plasmodium sporozoites

    Get PDF
    Antibodies are capable of blocking infection of the liver by Plasmodium sporozoites. Accordingly the induction of anti-sporozoite antibodies is a major aim of various vaccine approaches to malaria. In recent years our knowledge of the specificity and quantities of antibodies required for protection has been greatly expanded by clinical trials of various whole sporozoite and subunit vaccines. Moreover, the development of humanized mouse models and transgenic parasites have also aided our ability to assess the specificity of antibodies and their ability to block infection. Nonetheless, considerable gaps remain in our knowledge - in particular in understanding what antigens are recognized by infection blocking antibodies and in knowing how we can induce robust, long-lived antibody responses. Maintaining high levels of circulating antibodies is likely to be of primary importance, as antibodies must block infection in the short time it takes for sporozoites to reach the liver from the skin. It is clear that a better understanding of the development of protective B cell-mediated immunity will aid the development and refinement of malaria vaccines.The authors acknowledge the support of the Australian National University and Perpetual Foundation for research in the Cockburn laboratory

    Ab initio methods for finite temperature two-dimensional Bose gases

    Full text link
    The stochastic Gross-Pitaevskii equation and modified Popov theory are shown to provide an ab initio description of finite temperature, weakly-interacting two-dimensional Bose gas experiments. Using modified Popov theory, a systematic approach is developed in which the momentum cut-off inherent to classical field methods is removed as a free parameter. This is shown to yield excellent agreement with the recent experiment of Hung et al. [Nature, 470, 236 (2011)], verifying that the stochastic Gross-Pitaevskii equation captures the observed universality and scale-invariance.Comment: 5 pages, 4 figure

    Phase coherence in quasicondensate experiments: an ab initio analysis via the stochastic Gross-Pitaevskii equation

    Full text link
    We perform an ab initio analysis of the temperature dependence of the phase coherence length of finite temperature, quasi-one-dimensional Bose gases measured in the experiments of Richard et al. (Phys. Rev. Lett. 91, 010405 (2003)) and Hugbart et al. (Eur. Phys. J. D 35, 155-163 (2005)), finding very good agreement across the entire observed temperature range (0.8<T/Tϕ<280.8<T/T_{\phi}<28). Our analysis is based on the one-dimensional stochastic Gross-Pitaevskii equation, modified to self-consistently account for transverse, quasi-one-dimensional effects, thus making it a valid model in the regime μ fewω\mu ~ few \hbar \omega_\perp. We also numerically implement an alternative identification of TϕT_{\phi}, based on direct analysis of the distribution of phases in a stochastic treatment.Comment: Amended manuscript with improved agreement to experiment, following some additional clarifications by Mathilde Hugbart and Fabrice Gerbier and useful comments by the reviewer; accepted for publication in Physical Review

    Quantitative study of quasi-one-dimensional Bose gas experiments via the stochastic Gross-Pitaevskii equation

    Full text link
    The stochastic Gross-Pitaevskii equation is shown to be an excellent model for quasi-one-dimensional Bose gas experiments, accurately reproducing the in situ density profiles recently obtained in the experiments of Trebbia et al. [Phys. Rev. Lett. 97, 250403 (2006)] and van Amerongen et al. [Phys. Rev. Lett. 100, 090402 (2008)], and the density fluctuation data reported by Armijo et al. [Phys. Rev. Lett. 105, 230402 (2010)]. To facilitate such agreement, we propose and implement a quasi-one-dimensional stochastic equation for the low-energy, axial modes, while atoms in excited transverse modes are treated as independent ideal Bose gases.Comment: 10 pages, 5 figures; updated figures with experimental dat

    Sexual violence in Iraq: Challenges for transnational feminist politics

    Get PDF
    The article discusses sexual violence by ISIS against women in Iraq, particularly Yezidi women, against the historical background of broader sexual and gender-based violence. It intervenes in feminist debates about how to approach and analyse sexual and wider gender-based violence in Iraq specifically and the Middle East more generally. Recognizing the significance of positionality, the article argues against dichotomous positions and for the need to look at both macrostructural configurations of power pertaining to imperialism, neoliberalism and globalization on the one hand, and localized expressions of patriarchy, religious interpretations and practices and cultural norms on the other hand. Finally, the article reflects on the question of what a transnational feminist solidarity might look like in relation to sexual violence by ISIS

    Tutorial on Hybridizable Discontinous Galerkin (HDG) for second-order elliptic problems

    Get PDF
    The HDG is a new class of discontinuous Galerkin (DG) methods that shares favorable properties with classical mixed methods such as the well known Raviart-Thomas methods. In particular, HDG provides optimal convergence of both the primal and the dual variables of the mixed formulation. This property enables the construction of superconvergent solutions, contrary to other popular DG methods. In addition, its reduced computational cost, compared to other DG methods, has made HDG an attractive alternative for solving problems governed by partial differential equations. A tutorial on HDG for the numerical solution of second-order elliptic problems is presented. Particular emphasis is placed on providing all the necessary details for the implementation of HDG methods.Peer ReviewedPreprin

    Matter-wave dark solitons: stochastic vs. analytical results

    Get PDF
    The dynamics of dark matter-wave solitons in elongated atomic condensates are discussed at finite temperatures. Simulations with the stochastic Gross-Pitaevskii equation reveal a noticeable, experimentally observable spread in individual soliton trajectories, attributed to inherent fluctuations in both phase and density of the underlying medium. Averaging over a number of such trajectories (as done in experiments) washes out such background fluctuations, revealing a well-defined temperature-dependent temporal growth in the oscillation amplitude. The average soliton dynamics is well captured by the simpler dissipative Gross-Pitaevskii equation, both numerically and via an analytically-derived equation for the soliton center based on perturbation theory for dark solitons.Comment: 4 pages, 3 figures. Added several reference

    Fluctuating and dissipative dynamics of dark solitons in quasi-condensates

    Full text link
    The fluctuating and dissipative dynamics of matter-wave dark solitons within harmonically trapped, partially condensed Bose gases is studied both numerically and analytically. A study of the stochastic Gross-Pitaevskii equation, which correctly accounts for density and phase fluctuations at finite temperatures, reveals dark soliton decay times to be lognormally distributed at each temperature, thereby characterizing the previously predicted long lived soliton trajectories within each ensemble of numerical realizations (S.P. Cockburn {\it et al.}, Phys. Rev. Lett. 104, 174101 (2010)). Expectation values for the average soliton lifetimes extracted from these distributions are found to agree well with both numerical and analytic predictions based upon the dissipative Gross-Pitaevskii model (with the same {\it ab initio} damping). Probing the regime for which 0.8kBT<μ<1.6kBT0.8 k_{B}T < \mu < 1.6 k_{B}T, we find average soliton lifetimes to scale with temperature as τT4\tau\sim T^{-4}, in agreement with predictions previously made for the low-temperature regime kBTμk_{B}T\ll\mu. The model is also shown to capture the experimentally-relevant decrease in the visibility of an oscillating soliton due to the presence of background fluctuations.Comment: 17 pages, 14 figure
    corecore