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Antibodies are capable of blocking infection of the liver by Plasmodium sporozoites.
Accordingly the induction of anti-sporozoite antibodies is a major aim of various vaccine
approaches to malaria. In recent years our knowledge of the specificity and quantities of
antibodies required for protection has been greatly expanded by clinical trials of various
whole sporozoite and subunit vaccines. Moreover, the development of humanized mouse
models and transgenic parasites have also aided our ability to assess the specificity of
antibodies and their ability to block infection. Nonetheless, considerable gaps remain in
our knowledge – in particular in understanding what antigens are recognized by infection
blocking antibodies and in knowing how we can induce robust, long-lived antibody
responses. Maintaining high levels of circulating antibodies is likely to be of primary
importance, as antibodies must block infection in the short time it takes for sporozoites to
reach the liver from the skin. It is clear that a better understanding of the development of
protective B cell-mediated immunity will aid the development and refinement of malaria
vaccines.
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INTRODUCTION
The generation of protective antibodies underpins the success of
almost all of our current vaccines (Plotkin, 2008, 2010). While
there is no licensed vaccine available for malaria, one indica-
tion that a vaccine may be achievable comes from the seminal
finding that immunization with radiation attenuated sporozoites
(RAS) results in protection against live parasite challenge in both
mice and humans (Nussenzweig et al., 1967; Clyde et al., 1973;
Hoffman et al., 2002; Seder et al., 2013). Moreover, complete pro-
tection against malaria has also been demonstrated in volunteers
immunized with low numbers of infectious bites under chloro-
quine prophylaxis (Roestenberg et al., 2009), also known as DAP
immunization. Protective responses induced by RAS appear to
be principally based on CD8+ T cells and antibodies (Schofield
et al., 1987; Weiss et al., 1988), with contributions from CD4+ T
cells, gamma-delta T cells and natural killer (NK) cells also pro-
posed (Tsuji et al., 1994; Doolan and Hoffman, 1999; Oliveira et al.,
2008). Antibodies could block infection at the pre-erythrocytic
stages in several ways, either by neutralizing sporozoites directly,
opsonizing sporozoites for phagocytosis or blocking invasion of
parasites into hepatocytes. There is also some evidence that anti-
bodies can block liver stage development, though the mechanism
for this is unclear (Chatterjee et al., 1996). In this minireview
we will examine the evidence that antibodies can play important
roles in protection, evaluate the targets of those antibodies and
determine what needs to be known to advance our knowledge
of antibody and B cell immunity to sporozoites, and potentially
contribute to vaccine development.

Abbreviations: AMA-1, apical membrane antigen 1; CSP, circumsporozoite protein;
DAP, drug arrested parasites; LLPC, long-lived plasma cell; LSA-1, liver stage antigen
1; mAb, monoclonal antibody; STARP, serine threonine and asparagine rich protein;
TRAP, thrombospondin repeat anonymous protein; TSR, thrombospondin repeat.

ANTIBODY MEDIATED PROTECTION AGAINST SPOROZOITE
CHALLENGE
EARLY STUDIES ON HUMORAL IMMUNITY: THE IDENTIFICATION OF
THE CIRCUMSPOROZOITE PROTEIN AS A TARGET OF PROTECTIVE
IMMUNITY
Shortly after the discovery of protective immunization with RAS,
it was found that RAS immunized mice rapidly cleared the
sporozoite inoculum from circulation, suggesting the presence of
neutralizing antibodies (Nussenzweig et al., 1972). Later trans-
fer experiments showed that immunoglobulin G (IgG) and T
cells acted synergistically to confer sterile immunity to sporo-
zoites, (Schofield et al., 1987). More recently, sera from individuals
immunized with DAPs was found to reduce infection of human-
ized mice infected with Plasmodium falciparum (Behet et al., 2014).
Other early evidence for a role of antibodies in protection came
from the identification of mAbs capable of inducing the precipi-
tation of material from the surface of human and rodent malaria
sporozoites – a phenomenon known as the circumsporozoite reac-
tion (Yoshida et al., 1980). These mAbs were shown to be capable
of blocking infection in vitro (Nardin et al., 1982), and in vivo
(Potocnjak et al., 1980). Subsequently the target of these antibod-
ies was cloned and identified as the CSP (Ellis et al., 1983; Dame
et al., 1984; Enea et al., 1984)

CSP is a GPI-anchored protein consisting of a conserved
domain structure with N- and C-terminal domains separated by
an asparagine-rich repeat region. The C-terminal domain con-
tains a conserved TSR, which is important for the recognition
and binding of hepatocytes (Cerami et al., 1992; Frevert et al.,
1993). The N-terminal domain acts by masking the TSR of the
C-terminal domain, and has to be cleaved to allow the parasite
to invade hepatocytes (Coppi et al., 2011). In contrast, the role
of the repeat region, which in P. falciparum consists of (NANP)n
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repeats with a few NVDP repeats interspersed at the beginning,
is unknown. Nonetheless, this region was identified early on as
an important target of protective immunity, and contains the
epitopes recognized by all the original anti-CSP mAbs reported
(Zavala et al., 1983, 1985). In terms of protective immunity, much
less work has been done to investigate antibody responses to the
N- and C-terminal domains despite their functional importance.
Several studies have shown that immunization with N-terminal
peptides can induce invasion-blocking antibodies (Rathore et al.,
2005; Bongfen et al., 2009). Interestingly, a correlation between the
presence of antibodies to this region with a reduction in malaria
morbidity has also been observed (Bongfen et al., 2009).

PROTECTION MEDIATED BY ANTI-CSP ANTIBODIES IN HUMANS:
LESSONS FROM VACCINE TRIALS
Perhaps, the strongest evidence that anti-CSP antibodies can be
protective comes from trials of the CSP-based RTS,S vaccine
(Stoute et al., 1997). RTS,S is a virus-like particle consisting of
19 NANP repeats and C terminal domain of the CSP fused to
the Hepatitis B Surface antigen. RTS,S is currently in Phase III
clinical trials in a formulation with AS01, a proprietary adjuvant
consisting of a mixture of liposomes, monophosphoril lipid A
and saponin (Casares et al., 2010). In experimental challenges
of malaria-naïve adults, RTS,S gives short-lived sterile protec-
tion in around 50% of volunteers (Kester et al., 2001, 2009).
In phase III clinical trials in endemic areas, RTS,S gave 56%
protection against clinical malaria among 5–17 month old chil-
dren (Agnandji et al., 2011b), and 31% efficacy among younger
infants (Rts et al., 2012). While there is some evidence of reduced
numbers of infections in the field (Guinovart et al., 2009), the
main effect of the vaccine appears to be on disease severity,
which is surprising as CSP is not expressed in the pathogenic
blood stages. The data are however similar to the findings of
Bongfen et al. (2009; described above) showing protection against
disease correlating with high titres of N-terminus specific anti-
bodies. One explanation for these results is that the vaccine
might lower the initial inoculum of parasites and thus the num-
ber of blood stages emerging from the liver, buying time for
the immune system to control infection. It may also be that
while the vaccine does not block all infectious bites, the break-
through infections are less likely to be genetically complex or
highly virulent (Moorthy and Ballou, 2009). Importantly, these
data rebut one of the traditional objections to pre-erythrocytic
stage vaccines, namely that they would be ineffective if parasites
do breakthrough and establish blood stage infection. Nonethe-
less, this does not negate the importance of developing vaccines
targeting other life cycle stages in tandem with pre-erythrocytic
approaches.

The mechanisms of protection by RTS,S are poorly understood,
with different trials measuring different immunological parame-
ters. Most studies report ELISA titres of total IgG responses against
the (NANP)n repeat, but some use μg/ml while other report titres
as ELISA Units (EU). Only in early studies were antibodies segre-
gated by subclass, with no association reported between subclasses
and protection (Stoute et al., 1997; Kester et al., 2001). Antibodies
to the C-terminal domain have been little studied and were not
found to be associated with protection (Kester et al., 2001). Finally

only one study reports the number of CSP-specific B cells in vac-
cinated individuals (Agnandji et al., 2011a). Nonetheless direct
evidence that RTS,S induced antibodies can protect comes from a
recent study in which human mAbs targeting the CSP repeat were
shown to block P. falciparum infection of humanized mice (Foquet
et al., 2014).

Clinical trials of the vaccine both in naïve individuals and in the
field also provide strong evidence of a role for anti-CSP antibod-
ies. Mathematical modeling of a Phase IIb trial in which malaria
naïve volunteers were given the RTS,S vaccine formulated in either
AS01B or AS02A (Kester et al., 2009), suggested that the bulk of
protection comes from high levels (100–200 μg/ml) of anti-repeat
antibodies, aided by robust CD4+ T cell responses (White et al.,
2013). Importantly, in this study protection did not correlate with
titres of Hepatitis B antibodies – which are also induced by the
vaccine – suggesting that the CSP antibodies were mediating pro-
tection and were not merely a correlate of vaccine “take” (Kester
et al., 2009). In endemic areas, mathematical modeling based on
a meta-analysis of all Phase II trials has suggested a threshold for
infection blocking immunity around 51 EU/ml among children
and infants, which is probably similar to the levels required for
protection in naïve volunteers (White et al., 2014).

ANTI-CSP ANTIBODIES: OUTSTANDING QUESTIONS
Regardless of the exact measurement used, it is clear that very high
titres of antibody are required for protection. While it is difficult
to compare directly with other vaccine regimens, the protective
cutoff for vaccines to Haemophilus influenzae and Pneumococ-
cus are <1 μg/ml (Plotkin, 2008), which leads us to ask, why
so much antibody is required for protection against sporozoites?
One possible answer is that a high amount of antibody is required
to eliminate every sporozoite in the short time it takes for the
parasites to exit the skin and migrate to the liver. Nonetheless
it is not clear how many of the antibodies measured by ELISA
are functional: it may be that only the highest affinity antibod-
ies are capable of sporozoite neutralization. Interestingly, in trials
of RAS or DAP, in vivo protection and in vitro infection block-
ing is obtained at quite low anti-CSP titres (Seder et al., 2013;
Behet et al., 2014; Finney et al., 2014). This may be because these
whole parasite vaccines stimulate a broad range of protective
immune responses, but it is also possible that they induce anti-
bodies that are better able to recognize the native conformation
of CSP. Finally there has been no biophysical or structural char-
acterization of the binding of anti-CSP antibodies. These data
would give an idea of the necessary affinity required for sporo-
zoite neutralization and show how antibodies bind to the repeat
region, which is likely to be somewhat disorganized (Plassmeyer
et al., 2009) – it seems likely that these antibodies may have to
stabilize the CSP structure and thus pay a high “entropic cost” in
binding.

THE ROLE OF OTHER ANTIGENS IN PROTECTION
The limited success of CSP-based recombinant vaccines relative
to whole parasite approaches has led to a search for other targets
of anti-sporozoite antibodies. Immunity to CSP is probably not
absolutely required for protection in rodent models as shown by
experiments in which mice immunized with wild type P. berghei
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RAS were fully protected against challenge with P. berghei sporo-
zoites expressing CSP from either P. yoelii or P. falciparum (Gruner
et al., 2007; Mauduit et al., 2009). Nonetheless, it is unclear
how much of this CSP-independent protection is mediated by
antibodies rather than T cells.

A variety of potential protective antigens have been identified in
the sporozoite and liver stages by classical approaches (Duffy et al.,
2012). However, while T cell responses to many of these anti-
gens such as LSA-1 and TRAP are relatively well studied (Duffy
et al., 2012; Offeddu et al., 2012), the evidence that antibodies to
these proteins may be protective is limited (Table 1). Combined
antibody titres to CSP, LSA-1 and TRAP have been correlated
with reduced incidence of clinical malaria among Kenyan chil-
dren (John et al., 2005), while antibodies to LSA-1 alone have been
associated with protection from reinfection following treatment
(Domarle et al., 1999). Early reports suggested that antibodies tar-
geting STARP could have even stronger invasion blocking activity
than anti-CSP antibodies, there has been little further examination
of this molecule (Fidock et al., 1997). Nonetheless when TRAP and
LSA-1 were formulated as vaccines in combination with the AS01
or AS02 adjuvant, they were unable to elicit protection (Cummings
et al., 2010; Kester et al., 2014).

More recent studies have used protein microarrays to exam-
ine the diversity of antibody responses induced after RAS or DAP
immunization of humans (Trieu et al., 2011; Felgner et al., 2013).
Antibody profiling of RAS vaccines by protein microarray revealed
strong antibody responses to two other established vaccine candi-
dates (AMA1 and TRAP) in addition to CSP and a large number of
proteins that had not previously been associated with protection.
Many of the remaining proteins were hypothetical or involved
in cell cycle functions. Protein microarray analysis of DAP immu-
nized volunteers revealed a different antibody profile with CSP and
LSA-1 being the only antigens recognized by all protected individ-
uals. Overall, these studies suggest that no single molecule is the
key to protection, rather protective antibody responses consist of
broad responses to numerous antigens.

B CELL RESPONSES TO Plasmodium SPOROZOITES
While vaccination studies in particular have provided insight into
protective antibody responses to sporozoites, sporozoite-specific
B cell memory and plasma cell formation is poorly understood.
Recognition of a foreign antigen by a B cell receptor leads to the
proliferation and differentiation of the activated B cell resulting

in the formation of short-lived plasma blasts, “early memory” B
cells (that do not enter germinal centers) and germinal center
B cells (Zotos and Tarlinton, 2012). Germinal center B cells are
generally considered the precursors of LLPCs that can maintain
antibody titres (Figure 1). Knowledge of the development and
maintenance of LLPCs would be of particular interest as the rapid
transit of sporozoites from skin to liver offers little or no oppor-
tunity for anamnestic responses (memory B cells) to contribute
to protection. To the best of our knowledge, no work has been

FIGURE 1 |The development of memory B cell subsets. Upon encounter
with either sporozoite antigen or vaccines, naïve B cells can undergo a
variety of different fates. Some develop into short-lived plasmablasts,
which give an immediate antibody response to infection. Others may
become “early memory” which is germinal center independent, or may
enter germinal centers where theirB cell receptors undergo somatic
hypermutation and affinity maturation. The germinal center B cells are
believed to be the major precursors for long-lived plasma cells, which
maintain the circulating antibody pool. Memory cells may be class switched
or they may retain the IgM+ B cell receptor. The relative contributions of
these different memory populations to long term protection against malaria
remains an area for further investigation. Figure is based on Taylor et al.
(2012). Used with permission from Elsevier.

Table 1 | Potential non-CSP targets of anti-sporozoite antibodies.

Antigen Evidence Reference

TRAP/SSP2 Antibodies associated with protection from infection in endemic area

Mouse monoclonal antibodies display modest infection blocking activity in vitro

John et al. (2005)

Charoenvit et al. (1997)

LSA-1 Antibodies associated with protection from infection in endemic area

LSA-1 repeat antibodies correlate with protection from reinfection in a drug treated cohort

John et al. (2005)

Domarle et al. (1999)

STARP Affinity purified antibodies from exposed individuals block sporozoite invasion in vitro Fidock et al. (1997)

MB2 Rabbit polyclonal sera inhibit sporozoite invasion in vitro

Antibody levels correlate with protection in RAS immunized volunteers

Nguyen et al. (2009)

Nguyen et al. (2009)
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performed in animal models to examine the development and
longevity of sporozoite specific B cells and plasma cells. There are
however a number of observations of sporozoite specific B cells
in naturally exposed and DAP or RTS,S vaccinated individuals.
A study in Thailand reported very low levels of B cell responses
following natural exposure with only 1/33 adults having CSP-
specific B cells (Wipasa et al., 2010). More robust responses are
seen following immunization: CSP specific cells accounted for 1%
of circulating IgG secreting B cells following RTS,S vaccination
and 0.25% of circulating IgG secreting B cells after DAP treatment
(Agnandji et al., 2011a; Nahrendorf et al., 2014). These studies are
limited however, in that they rely on restimulation enzyme-linked
immunospot (ELISPOTs) and therefore cannot provide informa-
tion on cell phenotype, they report over relatively short timescales
and they investigate only IgG antibody secreting cells. Many of the
shortcomings of the ELISPOT approach could be overcome by the
use of fluorescently labeled antigens to detect rare B cell popula-
tions by flow cytometry, however while this has been performed
previously for blood stage antigens (Muellenbeck et al., 2013), no
such studies have yet been performed with sporozoite antigens.

THE ACTIVATION OF SPOROZOITE SPECIFIC MEMORY B CELLS
A key outstanding question is how are B cells primed by sporo-
zoites? This is particularly important given that immunization
with RAS and DAP represent our most successful immunization
approaches. It has been shown that after mosquito biting, a large
proportion of parasites remains in the skin and a subset of these
migrate to the draining lymph node (Amino et al., 2006). The skin
draining lymph node appears to be an important location for the
induction of protective immunity to sporozoites: not only is it the
first location where sporozoite specific CD8+ T cells are detected,
it has also been shown that the removal of this lymph node along
with the spleen completely abrogates RAS-mediated protection
(Chakravarty et al., 2007). By extension it seems likely that the
first interactions of B cells with sporozoite antigens occur at this
site.

The role of CD4+ T cells, and in particular T follicular helper
cells in providing help for antibody responses is also a neglected
area. Sporozoites can induce CD4+ T cells and numerous CD4+
epitopes have been identified in the CSP proteins of both mice and
human malaria strains (Nardin and Nussenzweig, 1993). More-
over, immunization studies with multiple antigen peptides have
shown that B cell responses to the NANP repeat are enhanced by
the inclusion of T cell epitopes (Tam et al., 1990). CSP-specific
CD4+ T cells expressing various effector functions area are also
associated with protection by RTS,S (White et al., 2013). Nonethe-
less the extent to which these cells are acting as direct effectors or
through help to antibody responses is unclear.

THE INFLUENCE OF BLOOD STAGE MALARIA ON B CELL RESPONSES TO
SPOROZOITES
One critical factor that may affect the maintenance of sporozoite
specific immunity, and immunity to vaccines in general, is malaria
infection itself (Urban et al., 1999; Ocana-Morgner et al., 2003). In
mouse models, the impact of blood stages on both bystander and
malaria-specific immune responses has been examined. P. yoelii
infection induces apoptosis of memory B cells and plasma cells

specific for the blood stage antigen MSP-1 (Wykes et al., 2005);
interestingly however, P. yoelii infection also induced apopto-
sis of bystander plasma cells. A similar effect has been reported
for Influenza A-specific plasma cells following infection with P.
chabaudi (Ng et al., 2014). This suggests that blood stage infection
may cause a generalized loss of plasma cells and memory B cells
irrespective of their specificity (Wykes et al., 2005). It is reported
that this apoptotic effect is the result of decreased levels of B cell
survival factor (BAFF) expression by conventional dendritic cells
in infected mice (Liu et al., 2012). In humans, BAFF expression was
found to increase during acute malarial infection and is associated
with more severe disease rather than less (Nduati et al., 2011). The
rise in soluble BAFF is also correlated with a general prolifera-
tion of B cells in volunteers given a controlled malaria challenge
(Scholzen et al., 2014).

Blood stage malaria infections in humans have also been
associated with high levels of so-called atypical memory B cells
(Weiss et al., 2009, 2011; Portugal et al., 2012; Illingworth et al.,
2013). Atypical memory B cells, characterized by low expression
of CD21 and CD27, have also been described in HIV-infected
viremic patients and display exhausted/anergic behavior (Moir
et al., 2008). Although they exhibit an ‘exhausted’ phenotype
in malaria infection by displaying decreased in vitro ability to
differentiate upon stimulation into plasma cells (Weiss et al.,
2009), atypical memory B cells isolated from asymptomatic semi-
immune donors appear to be functional and may secrete anti-P.
falciparum IgG (Muellenbeck et al., 2013). It would be desirable
to know if sporozoite-specific B cells are driven to form atypical
memory, either as bystanders to blood stage infection or due to
continued antigen exposure – e.g., from frequent biting, or cross
reactivity with blood stage antigens.

CONCLUDING REMARKS
Together the available data tell us that anti-sporozoite anti-
bodies can protect and should be a major component of a
pre-erythrocytic vaccine. Beyond CSP, however the targets of pro-
tective immunity are unknown. Further vaccine development is
also hampered by a lack of basic knowledge on such issues as
the optimal fine specificity, affinity and subclass required for
protection by anti-sporozoite antibodies. Finally a successful vac-
cine will have to induce longer-lived plasma cell and memory
responses than existing candidates. To understand these issues
a better understanding of the immunology of anti-sporozoite B
cell responses seems essential; such knowledge may enable the
development of new subunit approaches, or enable us to optimize
whole parasite vaccines.
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