107 research outputs found

    Two-Color Bright Squeezed Vacuum

    Full text link
    In a strongly pumped non-degenerate traveling-wave OPA, we produce two-color squeezed vacuum with up to millions of photons per pulse. Our approach to registering this macroscopic quantum state is direct detection of a large number of transverse and longitudinal modes, which is achieved by making the detection time and area much larger than the coherence time and area, respectively. Using this approach, we obtain a record value of twin-beam squeezing for direct detection of bright squeezed vacuum. This makes direct detection of macroscopic squeezed vacuum a practical tool for quantum information applications.Comment: 4 pages, 4 figure

    High-visibility multi-photon interference of Hanbury Brown - Twiss type for classical light

    Full text link
    Difference-phase (or Hanbury Brown - Twiss type) intensity interference of classical light is considered in higher orders in the intensity. It is shown that, while the visibility of sum-phase (NOON-type) interference for classical sources drops with the order of interference, the visibility of difference-phase interference has opposite behavior. For three-photon and four-photon interference of two coherent sources, the visibility can be as high as 81.8% and 94.4%, respectively. High-visibility three-photon and four-photon interference of space-time and polarization types has been observed in experiment, for both coherent and pseudo-thermal light.Comment: 11 pages, 9 figure

    Polarization-Entangled Light Pulses of 10^5 Photons

    Full text link
    We experimentally demonstrate polarization entanglement for squeezed vacuum pulses containing more than 10^5 photons. We also study photon-number entanglement by calculating the Schmidt number and measuring its operational counterpart. Theoretically, our pulses are the more entangled the brighter they are. This promises important applications in quantum technologies, especially photonic quantum gates and quantum memories.Comment: 8 pages, 6 figure

    Two-Photon Polarization Interference for Pulsed SPDC in a PPKTP Waveguide

    Get PDF
    We study the spectral properties of Spontaneous Parametric Down Conversion in a periodically poled waveguided structure of KTP crystal pumped by ultra-short pulses. Our theoretical analysis reveals a strongly multimode and asymmetric structure of the two-photon spectral amplitude for type-II SPDC. Experimental evidence, based on Hong-Ou-Mandel polarization interference with narrowband filtering, confirms this result.Comment: Submitted for publicatio

    Filtering of the absolute value of photon-number difference for two-mode macroscopic quantum superpositions

    Full text link
    We discuss a device capable of filtering out two-mode states of light with mode populations differing by more than a certain threshold, while not revealing which mode is more populated. It would allow engineering of macroscopic quantum states of light in a way which is preserving specific superpositions. As a result, it would enhance optical phase estimation with these states as well as distinguishability of "macroscopic" qubits. We propose an optical scheme, which is a relatively simple, albeit non-ideal, operational implementation of such a filter. It uses tapping of the original polarization two-mode field, with a polarization neutral beam splitter of low reflectivity. Next, the reflected beams are suitably interfered on a polarizing beam splitter. It is oriented such that it selects unbiased polarization modes with respect to the original ones. The more an incoming two-mode Fock state is unequally populated, the more the polarizing beam splitter output modes are equally populated. This effect is especially pronounced for highly populated states. Additionally, for such states we expect strong population correlations between the original fields and the tapped one. Thus, after a photon-number measurement of the polarizing beam splitter outputs, a feed-forward loop can be used to let through a shutter the field, which was transmitted by the tapping beam splitter. This happens only if the counts at the outputs are roughly equal. In such a case, the transmitted field differs strongly in occupation number of the two modes, while information on which mode is more populated is non-existent (a necessary condition for preserving superpositions).Comment: 11 pages, 12 figure

    Generation and Direct Detection of Broadband Mesoscopic Polarization-Squeezed Vacuum

    Full text link
    Using a traveling-wave OPA with two orthogonally oriented type-I BBO crystals pumped by picosecond pulses, we generate vertically and horizontally polarized squeezed vacuum states within a broad range of wavelengths and angles. Depending on the phase between these states, fluctuations in one or another Stokes parameters are suppressed below the shot-noise limit. Due to the large number of photon pairs produced, no local oscillator is required, and 3dB squeezing is observed by means of direct detection.Comment: 4 pages, 4 figures, submitted to PR

    Conditioned Unitary Transformation on biphotons

    Full text link
    A conditioned unitary transformation (90o90^o polarization rotation) is performed at single-photon level. The transformation is realized by rotating polarization for one of the photons of a polarization-entangled biphoton state (signal photon) by means of a Pockel's cell triggered by the detection of the other (idler) photon after polarization selection. As a result, polarization degree for the signal beam changes from zero to the value given by the idler detector quantum efficiency. This result is relevant to practical realization of various quantum information schemes and can be used for developing a new method of absolute quantum efficiency calibration

    Generation of different Bell states within the SPDC phase-matching bandwidth

    Full text link
    We study the frequency-angular lineshape for a phase-matched nonlinear process producing entangled states and show that there is a continuous variety of maximally-entangled states generated for different mismatch values within the natural bandwidth. Detailed considerations are made for two specific methods of polarization entanglement preparation, based on type-II spontaneous parametric down-conversion (SPDC) and on SPDC in two subsequent type-I crystals producing orthogonally polarized photon pairs. It turns out that different Bell states are produced at the center of the SPDC line and on its slopes, corresponding to about half-maximum intensity level. These Bell states can be filtered out by either frequency selection or angular selection, or both. Our theoretical calculations are confirmed by a series of experiments, performed for the two above-mentioned schemes of producing polarization-entangled photon pairs and with two kinds of measurements: frequency-selective and angular-selective.Comment: submitted for publicatio

    Orthogonality of Biphoton Polarization States

    Full text link
    Orthogonality of two-photon polarization states belonging to a single frequency and spatial mode is demonstrated experimentally, in a generalization of the well-known anti-correlation 'dip' experiment.Comment: Submitted to Phys.Rev.Let
    • …
    corecore