10,155 research outputs found

    Checklist of the Ants of Michigan (Hymenoptera: Formicidae)

    Get PDF
    A total of 113 species of ants is recorded by county from the state of Michigan. The list is based upon literature records and specimens in the authors\u27 collections and those of the University of Michigan Museum of Zoology and the Michigan State University Department of Entomology. The list includes 3 species in Ponerinae, 44 in Myrnucinae, 6 in Dolichoderinae, and 60 in Formicinae. Ten species represent new state records. Five distribution pat- terns are evident: statewide (39 species), southern counties only (5), southern 3/4th of Lower Peninsula (10), Lower Peninsula (17), and Upper Peninsula (2). Forty species have been collected too infrequently to determine the distribution within the state

    Notes on ant larvae : 1989-1991

    Get PDF
    In 1976 we published "Ant Larvae: Review and Synthesis," which we regarded as a summary of our life-time of research. During the following years so many new larvae were added to our collection and so much was published about ant larvae that we decided another general treatment was desirable; so in 1986 we published a "Ten-Year Supplement" to include additions and revisions to our Memoir. In 1987 and 1988 additional material warranted a supplement to the "10-year Supplement" in 1989a. This article is the third supplement to the Memoir. In the supplement, two genera are characterized, one generic characterization is revised, and references in the literature are increased by 43. Changes in our Memoir (1976) and its supplements (1986, 1989a) are noted

    Quantum Black Holes as the Link Between Microphysics and Macrophysics

    Full text link
    There appears to be a duality between elementary particles, which span the mass range below the Planck scale, and black holes, which span the mass range range above it. In particular, the Black Hole Uncertainty Principle Correspondence posits a smooth transition between the Compton and Schwarzschild scales as a function of mass. This suggests that all black holes are in some sense quantum, that elementary particles can be interpreted as sub-Planckian black holes, and that there is a subtle connection between quantum and classical physics.Comment: 9 pages, 7 figures, 2015 Karl Schwarzschild Meeting on Gravitational Physics, eds. P. Nicolini, J. Mureika, M. Kaminski and M. Bleiche

    Planck scale inflationary spectra from quantum gravity

    Get PDF
    We derive the semiclassical evolution of massless minimally coupled scalar matter in the de Sitter space-time from the Born-Oppenheimer reduction of the Wheeler-DeWitt equation. We show that the dynamics of trans-Planckian modes can be cast in the form of an effective modified dispersion relation and that high energy corrections in the power spectrum of the cosmic microwave background radiation produced during inflation remain very small if the initial state is the Bunch-Davies vacuum.Comment: 6 pages, no figures, final version to appear in PR

    NMR implementation of Quantum Delayed-Choice Experiment

    Full text link
    We report the first experimental demonstration of quantum delayed-choice experiment via nuclear magnetic resonance techniques. An ensemble of molecules each with two spin-1/2 nuclei are used as target and the ancilla qubits to perform the quantum circuit corresponding the delayed-choice setup. As expected in theory, our experiments clearly demonstrate the continuous morphing of the target qubit between particle-like and wave-like behaviors. The experimental visibility of the interference patterns shows good agreement with the theory.Comment: Revised text, more figures adde

    Modeling Reactive Wetting when Inertial Effects are Dominant

    Full text link
    Recent experimental studies of molten metal droplets wetting high temperature reactive substrates have established that the majority of triple-line motion occurs when inertial effects are dominant. In light of these studies, this paper investigates wetting and spreading on reactive substrates when inertial effects are dominant using a thermodynamically derived, diffuse interface model of a binary, three-phase material. The liquid-vapor transition is modeled using a van der Waals diffuse interface approach, while the solid-fluid transition is modeled using a phase field approach. The results from the simulations demonstrate an O \left( t^{-\nicefrac{1}{2}} \right) spreading rate during the inertial regime and oscillations in the triple-line position when the metal droplet transitions from inertial to diffusive spreading. It is found that the spreading extent is reduced by enhancing dissolution by manipulating the initial liquid composition. The results from the model exhibit good qualitative and quantitative agreement with a number of recent experimental studies of high-temperature droplet spreading, particularly experiments of copper droplets spreading on silicon substrates. Analysis of the numerical data from the model suggests that the extent and rate of spreading is regulated by the spreading coefficient calculated from a force balance based on a plausible definition of the instantaneous interface energies. A number of contemporary publications have discussed the likely dissipation mechanism in spreading droplets. Thus, we examine the dissipation mechanism using the entropy-production field and determine that dissipation primarily occurs in the locality of the triple-line region during the inertial stage, but extends along the solid-liquid interface region during the diffusive stage

    Emergence of classical behavior from the quantum spin

    Full text link
    Classical Hamiltonian system of a point moving on a sphere of fixed radius is shown to emerge from the constrained evolution of quantum spin. The constrained quantum evolution corresponds to an appropriate coarse-graining of the quantum states into equivalence classes, and forces the equivalence classes to evolve as single units representing the classical states. The coarse-grained quantum spin with the constrained evolution in the limit of the large spin becomes indistinguishable from the classical system

    Structural and wetting properties of nature\u27s finest silks (order Embioptera)

    Get PDF
    Insects from the order Embioptera (webspinners) spin silk fibres which are less than 200 nm in diameter. In this work, we characterized and compared the diameters of single silk fibres from nine species—Antipaluria urichi, Pararhagadochir trinitatis, Saussurembia calypso, Diradius vandykei, Aposthonia ceylonica, Haploembia solieri, H. tarsalis, Oligotoma nigra and O. saundersii. Silk from seven of these species have not been previously quantified. Our studies cover five of the 10 named taxonomic families and represent about one third of the known taxonomic family-level diversity in the order Embioptera. Naturally spun silk varied in diameter from 43.6 ± 1.7 nm for D. vandykei to 122.4 ± 3.2 nm for An. urichi. Mean fibre diameter did not correlate with adult female body length. Fibre diameter is more similar in closely related species than in more distantly related species. Field observations indicated that silk appears shiny and smooth when exposed to rainwater. We therefore measured contact angles to learn more about interactions between silk and water. Higher contact angles were measured for silks with wider fibre diameter and higher quantity of hydrophobic amino acids. High static contact angles (ranging up to 122° ± 3° for An. urichi) indicated that silken sheets spun by four arboreal, webspinner species were hydrophobic. A second contact angle measurement made on a previously wetted patch of silk resulted in a lower contact angle (average difference was greater than 27°) for all four species. Our studies suggest that silk fibres which had been previously exposed to water exhibited irreversible changes in hydrophobicity and water adhesion properties. Our results are in alignment with the ‘super-pinning’ site hypothesis by Yarger and co-workers to describe the hydrophobic, yet water adhesive, properties exhibited by webspinner silk fibres. The physical and chemical insights gained here may inform the synthesis and development of smaller diameter silk fibres with unique water adhesion properties

    Uncollapsing the wavefunction by undoing quantum measurements

    Full text link
    We review and expand on recent advances in theory and experiments concerning the problem of wavefunction uncollapse: Given an unknown state that has been disturbed by a generalized measurement, restore the state to its initial configuration. We describe how this is probabilistically possible with a subsequent measurement that involves erasing the information extracted about the state in the first measurement. The general theory of abstract measurements is discussed, focusing on quantum information aspects of the problem, in addition to investigating a variety of specific physical situations and explicit measurement strategies. Several systems are considered in detail: the quantum double dot charge qubit measured by a quantum point contact (with and without Hamiltonian dynamics), the superconducting phase qubit monitored by a SQUID detector, and an arbitrary number of entangled charge qubits. Furthermore, uncollapse strategies for the quantum dot electron spin qubit, and the optical polarization qubit are also reviewed. For each of these systems the physics of the continuous measurement process, the strategy required to ideally uncollapse the wavefunction, as well as the statistical features associated with the measurement is discussed. We also summarize the recent experimental realization of two of these systems, the phase qubit and the polarization qubit.Comment: 19 pages, 4 figure
    • 

    corecore