41,885 research outputs found

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease

    Get PDF
    Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge

    Public sector austerity cuts in the UK and the changing discourse of work-life balance

    Get PDF
    The relative importance of economic and other motives for employers to provide support for work- life balance (WLB) is debated within different literatures. However, discourses of WLB can be sensitive to changing economic contexts. This article draws on in-depth interviews with senior HR professionals in British public sector organisations to examine shifting discourses of WLB in an austerity context. Three main discourses were identified: WLB practices as organisationally embedded amid financial pressures, WLB practices as a strategy for managing financial pressures and WLB as a personal responsibility. Despite a discourse of mutual benefits to employee and employer underpinning all three discourses, there is a distinct shift towards greater emphasis on economic rather than institutional interests of employers during austerity, accompanied by discursive processes of fixing, stretching, shrinking and bending understandings of WLB. The reconstructed meaning of WLB raises concerns about its continued relevance to its original espoused purpose

    Monetary costs of agitation in older adults with Alzheimer's disease in the UK: prospective cohort study

    Get PDF
    While nearly half of all people with Alzheimer's disease (AD) have agitation symptoms every month, little is known about the costs of agitation in AD. We calculated the monetary costs associated with agitation in older adults with AD in the UK from a National Health Service and personal social services perspective

    Predicted efficiency of Si wire array solar cells

    Get PDF
    Solar cells based on arrays of CVD-grown Si nano- or micro-wires have attracted interest as potentially low-cost alternatives to conventional wafer-based Si photovoltaics [1-6], and single-wire solar cells have been reported with efficiencies of up to 3.4% [7]. We recently presented device physics simulations which predicted efficiencies exceeding 17%, based on experimentally observed diffusion lengths within our wires [8]. However, this model did not take into account the optical properties of a wire array device - in particular the inherently low packing fraction of wires within CVD-grown wire arrays, which might limit their ability to fully absorb incident sunlight. For this reason, we have combined a device physics model of Si wire solar cells with FDTD simulations of light absorption within wire arrays to investigate the potential photovoltaic efficiency of this cell geometry. We have found that even a sparsely packed array (14%) is expected to absorb moderate (66%) amounts of above-bandgap solar energy, yielding a simulated photovoltaic efficiency of 14.5%. Because the wire array comprises such a small volume of Si, the observed absorption represents an effective optical concentration, which enables greater operating voltages than previously predicted for Si wire array solar cells
    corecore