27,855 research outputs found

    Microlensing of the Lensed Quasar SDSS0924+0219

    Full text link
    We analyze V, I and H band HST images and two seasons of R-band monitoring data for the gravitationally lensed quasar SDSS0924+0219. We clearly see that image D is a point-source image of the quasar at the center of its host galaxy. We can easily track the host galaxy of the quasar close to image D because microlensing has provided a natural coronograph that suppresses the flux of the quasar image by roughly an order of magnitude. We observe low amplitude, uncorrelated variability between the four quasar images due to microlensing, but no correlated variations that could be used to measure a time delay. Monte Carlo models of the microlensing variability provide estimates of the mean stellar mass in the lens galaxy (0.02 Msun < M < 1.0 Msun), the accretion disk size (the disk temperature is 5 x 10^4 K at 3.0 x 10^14 cm < rs < 1.4 x 10^15 cm), and the black hole mass (2.0 x 10^7 Msun < MBH \eta_{0.1}^{-1/2} (L/LE)^{1/2} < 3.3 x 10^8 Msun), all at 68% confidence. The black hole mass estimate based on microlensing is consistent with an estimate of MBH = 7.3 +- 2.4 x 10^7 Msun from the MgII emission line width. If we extrapolate the best-fitting light curve models into the future, we expect the the flux of images A and B to remain relatively stable and images C and D to brighten. In particular, we estimate that image D has a roughly 12% probability of brightening by a factor of two during the next year and a 45% probability of brightening by an order of magnitude over the next decade.Comment: v.2 incorporates referee's comments and corrects two errors in the original manuscript. 28 pages, 10 figures, published in Ap

    Frequency response in surface-potential driven electro-hydrodynamics

    Full text link
    Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electro-hydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface capacitance where the net flow rate is in general zero while harmonic rolls as well as time-averaged vortex-like components may exist depending on the spatial symmetry and extension of the surface potential. In general the system displays a resonance behavior at a frequency corresponding to the inverse RC time of the system. Different surface potentials share the common feature that the resonance frequency is inversely proportional to the characteristic length scale of the surface potential. For the asymptotic frequency dependence above resonance we find a 1/omega^2 power law for surface potentials with either an even or an odd symmetry. Below resonance we also find a power law omega^alpha with alpha being positive and dependent of the properties of the surface potential. Comparing a tanh potential and a sech potential we qualitatively find the same slip velocity, but for the below-resonance frequency response the two potentials display different power law asymptotics with alpha=1 and alpha~2, respectively.Comment: 4 pages including 1 figure. Accepted for PR

    The Rewards of Patience: An 822 Day Time Delay in the Gravitational Lens SDSS J1004+4112

    Full text link
    We present 107 new epochs of optical monitoring data for the four brightest images of the gravitational lens SDSS J1004+4112 observed between October 2006 and June 2007. Combining this data with the previously obtained light curves, we determine the time delays between images A, B and C. We confirm our previous measurement finding that A leads B by dt_BA=40.6+-1.8 days, and find that image C leads image A by dt_CA=821.6+-2.1 days. The lower limit on the remaining delay is that image D lags image A by dt_AD>1250 days. Based on the microlensing of images A and B we estimate that the accretion disk size at a rest wavelength of 2300 angstrom is 10^{14.8+-0.3} cm for a disk inclination of cos{i}=1/2, which is consistent with the microlensing disk size-black hole mass correlation function given our estimate of the black hole mass from the MgII line width of logM_BH/M_sun=8.44+-0.14. The long delays allow us to fill in the seasonal gaps and assemble a continuous, densely sampled light curve spanning 5.7 years whose variability implies a structure function with a logarithmic slope of gamma = 0.35+-0.02. As C is the leading image, sharp features in the C light curve can be intensively studied 2.3 years later in the A/B pair, potentially allowing detailed reverberation mapping studies of a quasar at minimal cost.Comment: Submitted to ApJ, 12 pages, 3 figure
    • …
    corecore