844 research outputs found

    Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development

    Get PDF
    BBX24 and BBX25 are two important transcriptional regulators, which regulate seedling photomorphogenesis in Arabidopsis. Very recently, we have shown that BBX24 and BBX25 negatively regulate the expression of BBX22, reducing the function of HY5, by physically interacting with its bZIP domain.1 Furthermore, HY5 HOMOLOG, HYH, has been reported to heterodimerize with HY5 and enhances its photomorphogenic function in seedling de-etiolation by serving as coactivator.8 Here, we further report that BBX24 and BBX25 physically interact with HYH. The physical interactions of BBX24 and BBX25 with HYH could lead to depletion of HYH molecules from the active pool and, thus indirectly, reduce the function of HY5 in promoting photomorphogenesis. Hence, our results suggest another mode of regulation by which BBX24 and BBX25 exert their negative effects on HY5 indirectly through HYH for the fine-tuning of seedling photomorphogenesis.Fil: Gangappa, Sreeramaiah N.. Gothenburg University. Department of Biological and Environmental Sciences; SueciaFil: Holm, Magnus. Gothenburg University. Department of Biological and Environmental Sciences; SueciaFil: Botto, Javier Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin

    Serum Amyloid P Aids Complement-Mediated Immunity to Streptococcus pneumoniae

    Get PDF
    The physiological functions of the acute phase protein serum amyloid P (SAP) component are not well defined, although they are likely to be important, as no natural state of SAP deficiency has been reported. We have investigated the role of SAP for innate immunity to the important human pathogen Streptococcus pneumoniae. Using flow cytometry assays, we show that SAP binds to S. pneumoniae, increases classical pathway–dependent deposition of complement on the bacteria, and improves the efficiency of phagocytosis. As a consequence, in mouse models of infection, mice genetically engineered to be SAP-deficient had an impaired early inflammatory response to S. pneumoniae pneumonia and were unable to control bacterial replication, leading to the rapid development of fatal infection. Complement deposition, phagocytosis, and control of S. pneumoniae pneumonia were all improved by complementation with human SAP. These results demonstrate a novel and physiologically significant role for SAP for complement-mediated immunity against an important bacterial pathogen, and provide further evidence for the importance of the classical complement pathway for innate immunity

    Quantitative MRI Measurement of Binder Distributions in Green-State Ceramics

    Get PDF
    Development of reliable and improved structural ceramics for advanced heat engines and other applications requires process diagnostics and materials evaluation from powder preparation to green-body forming to final sintering. Injection molding is a promising processing method being developed for mass production of complex-shaped heat engine components such as turbochargers (rotors and stator vanes) and engine valves. Major processing steps in injection-molded ceramic manufacturing include preparation of ceramic powders and organic binders, mixing, molding, binder removal, sintering, and finishing [1]. While materials evaluation and diagnostics are needed throughout the process, it is particularly important to evaluate the distributions of binders/plasticizers in as-molded green bodies [2]. Poor distribution of these organics in a green body can lead to a final part that is defective or that has poor mechanical properties after it is sintered

    The Arabidopsis B-BOX Protein BBX25 Interacts with HY5, Negatively Regulating BBX22 Expression to Suppress Seedling Photomorphogenesis

    Get PDF
    ELONGATED HYPOCOTYL5 (HY5) is a basic domain/leucine zipper (bZIP) transcription factor, central for the regulation of seedling photomorphogenesis. Here, we identified a B-BOX (BBX)–containing protein, BBX25/SALT TOLERANCE HOMOLOG, as an interacting partner of HY5, which has been previously found to physically interact with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). BBX25 physically interacts with HY5 both in vitro and in vivo. By physiological and genetic approaches, we showed that BBX25 is a negative regulator of seedling photomorphogenesis. BBX25 and its homolog BBX24 regulate deetiolation processes and hypocotyl shade avoidance response in an additive manner. Moreover, genetic relationships of bbx25 and bbx24 with hy5 and cop1 revealed that BBX25 and BBX24 additively enhance COP1 and suppress HY5 functions. BBX25 accumulates in a light-dependent manner and undergoes COP1-mediated degradation in dark and light conditions. Furthermore, a protoplast cotransfection assay showed that BBX24 and BBX25 repress BBX22 expression by interfering with HY5 transcriptional activity. As HY5 binds to the BBX22 promoter and promotes its expression, our results identify a direct mechanism through which the expression of BBX22 is regulated. We suggest that BBX25 and BBX24 function as transcriptional corepressors, probably by forming inactive heterodimers with HY5, downregulating BBX22 expression for the fine-tuning of light-mediated seedling development.Fil: Gangappa, Sreeramaiah N.. Gothenburg University. Department of Biological and Environmental Sciences; SueciaFil: Crocco, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas A la Agricultura; ArgentinaFil: Johansson, Henrik. Gothenburg University. Department of Biological and Environmental Sciences; SueciaFil: Datta, Sourav. Gothenburg University. Department of Biological and Environmental Sciences; SueciaFil: Hettiarachchi, Chamari. Gothenburg University. Department of Biological and Environmental Sciences; SueciaFil: Holm, Magnus. Gothenburg University. Department of Biological and Environmental Sciences; SueciaFil: Botto, Javier Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas A la Agricultura; Argentin

    Complement C3 exacerbates imiquimod-induced skin inflammation and psoriasiform dermatitis

    Get PDF
    The complement system is pivotal in protection against pathogens, but also plays important roles in bridging innate and adaptive imm une responses (Scott and Botto, 2015) and in modulating local and systemic inflammation (Markiewski and Lambris, 2007). Activation of complement occurs through three different path ways (classical, alte rnative and lectin), converges at C3 cleavage and culminates in the formation of the membrane attack complex. The anaphylotoxic fragments, C3a and C5a, gene rated during the proteolytic cascade, recruit immune cells that can promote the removal of debris and pat hogens, but can also cause tissue damage (Markiewski and Lambris, 2007)

    Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease

    Get PDF

    Critical Micronutrients in Pregnancy, Lactation, and Infancy: Considerations on Vitamin D, Folic Acid, and Iron, and Priorities for Future Research

    Get PDF
    The Early Nutrition Academy and the European Commission-funded EURRECA Network of Excellence jointly sponsored a scientific workshop on critical micronutrients in pregnancy, lactation, and infancy. Current knowledge and unresolved questions on the supply of vitamin D, folic acid, and iron for pregnant women, lactating women, and infants, and their health effects were discussed. The question was addressed of whether, and under which circumstances, supplementation with these micronutrients in addition to usual dietary intakes is advisable. The workshop participants concluded that public health strategies for improving supplementation with these micronutrients in pregnancy, lactation, and infancy are required. Further research priorities should focus on adequately powered human intervention trials to obtain a stronger evidence base for the amounts of vitamin D, folic acid, and iron that have optimal effects on health. The conclusions of the workshop should help to inform the scientific community as well as public health policy strategies. Copyright (C) 2011 S. Karger AG, Base

    Deoxyribonucleic acid damage in human lymphocytes after percutaneous transluminal coronary angioplasty

    Get PDF
    AbstractObjectivesWe investigated the presence of oxidative deoxyribonucleic acid (DNA) damage in the peripheral lymphocytes of patients undergoing percutaneous transluminal coronary angioplasty (PTCA) by using the micronucleus test and comet assay, which are sensitive biomarkers of DNA damage.BackgroundAlthough it has recognized that ischemia-reperfusion can induce oxidative DNA damage, its occurrence in patients undergoing PTCA has not yet been demonstrated.MethodsThree groups of patients were enrolled: 30 patients with documented coronary heart disease who underwent elective PTCA (group I); 25 patients who underwent elective coronary angiography for diagnostic purpose (group II); and 27 healthy, age- and gender-matched subjects (group III). For each subject, the frequency of micronucleated binucleated (MNBN) cells, DNA single-strand breaks (SSBs), endonuclease III-sensitive sites, and sites sensitive to formamidopyrimidine glycosylase (FPG) were analyzed before and after diagnostic procedures.ResultsThe mean basal values of MNBN cells (p = 0.04), DNA-SSBs (p = 0.001), endonuclease III-sensitive sites (p = 0.002), and FPG sites (p < 0.0001) were significantly higher in groups I and II than in group III. A high significant increase of MNBN cell frequency was observed in group I after the PTCA procedure (11.0 ± 1.3 vs. 19.8 ± 1.6, p < 0.0001), whereas no significant difference was observed in group II (10.2 ± 1.3 vs. 12.9 ± 1.4, p = 0.18). A significant positive correlation was observed between the increase in the MNBN cell rate and total inflation time during PTCA (R = 0.549, p = 0.0017). The levels of DNA-SSBs (11.7 ± 1.4 vs. 26.5 ± 3.0, p = 0.0003) and FPG sites (13.8 ± 1.8 vs. 22.5 ± 2.4, p = 0.01) were also higher after PTCA.ConclusionsOur results provide evidence for oxidative DNA damage after PTCA, likely related to ischemia-reperfusion injury
    • …
    corecore