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Light is one of the most important abiotic factors, which deter-
mines the fate of plant growth and development. To cope with 
constant diurnal and seasonal variations in quality, quantity, 
duration and direction of light, plants have evolved a complex 
signaling network that involves photoreceptors, transcriptional 
regulators and downstream targets. The pathway begins with 
the perception of light signals by photoreceptors and ultimately 
leads to the modulation of the transcriptome through the action 
of transcription factors to switch on specific signaling cascades. 
Different photoreceptors perceive different wavelengths of light: 
red/far-red light is perceived by phytochromes (phyA-phyE), 
blue/UV-A light by cryptochromes (cry1 and cry2) and photo-
tropins (phot1 and phot2) and UV-B by UVR8 photoreceptor.2,3

Light is known to regulate nearly 30% of Arabidopsis tran-
scriptome.4 Different laboratories around the world have identi-
fied several transcriptional regulators, which integrate signals 
from photoreceptors.14 Some of them integrate different light 
signals and function downstream to different photoreceptors 
such as HY5, CAM7, BBX21, BBX22, BBX24, BBX251,6,7 and 
other are involved in specific light signaling such as HYH, 
MYC2, GBF1, BIT1 that integrate signals from blue light8-

11 or LAF1, HFR1, FHY1 and FHL from far-red light.12-14 In 
the light, the photoreceptors activate transcription factors such 
as HY5, HYH, CAM7, LAF1 and HFR1 by attenuating the 
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repressive action of negative regulators such as COP/DET/FUS. 
HY5, a major photomorphogenic transcription factor, regulates 
physiological processes such as inhibition of hypocotyl elonga-
tion, anthocyanin and chlorophyll synthesis and lateral root 
formation.15,16 HY5 preferentially binds to G-, Z- and ACE-box 
cis-acting elements present in the promoters of genes related 
to light, hormonal and metabolic pathways.17 Although HY5 
binding at the promoter is required for the regulation of photo-
morphogenic genes, for the correct transcriptional regulation, 
cooperation of other cofactors is necessary.17 In fact, HY5 has 
been reported to function co-operatively with HYH, CAM7, 
BBX21 and BBX22.5,7,8 HY5 physically interacts with HYH at 
the G-box element in the promoters of target genes8 regulat-
ing photomorphogenesis in blue, far-red and low UV-B.8,18,19 
Furthermore, BBX proteins can physically interact with HY5 
enhancing (BBX21 and BBX22) or suppressing (BBX24 and 
BBX25) its function.1,6,7 Although the physical interactions of 
BBX24 and BBX25 proteins with HY5 and their physiological 
significance is known to some extent, it is not clear whether 
these proteins can also interact with its close homolog, HYH. 
Here, we report that BBX24 and BBX25 physically interact 
with HYH and probably modulate indirectly the HY5 activ-
ity by the inactivation of HYH leading to the fine-tuning of 
photomorphogenesis.
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of these is likely to disrupt the structure of the 
B-box. All the three substitutions resulted in 
dramatic reduction of β-Gal activity compared 
with wild-type levels indicating that both the 
B-boxes are required for interaction with HY5 
(Fig. 1).

BBX24 and BBX25 Physically Interact 
with HYH in Yeast Cells

Very recently, we have shown that BBX24-
BBX25 co-operatively function to downregu-
late the expression of BBX22 by targeting HY5.1 
Because HY5 and HYH are closely homolo-
gous (share 69% homology at the amino acid 
level) and both function positively in seedling 
de-etiolation, we reasoned that BBX24 and 
BBX25 might interact with HYH. To this end, 
we cloned full-length HYH in Gal4-DBD vec-
tor and co-transformed with either BBX24 or 
BBX25 into Y190 strain in yeast to measure 
β-Gal activity. When we expressed BBX24 and 
BBX25 along with Gal4-DBD empty vector, 
they did not activate transcription. However, 

when they are expressed with Gal4-DBD-HYH, β-Gal activ-
ity resulted in a ~25- and 20-fold increase over the vector con-
trol (Fig. 2). These results clearly demonstrate that BBX24 and 
BBX25 physically interact with HYH in yeast cells. Collectively, 
the results showed here along with the previous data reported1 
indicate that both BBX24 and BBX25 interact with HY5 and 
HYH in yeast and both B-boxes encoded by BBX24 and BBX25 
are important for the interaction with HY5. It is evident that 
HYH is an important functional cofactor partner of HY5 and 
together they regulate a variety of developmental processes such 
as hypocotyl growth, pigment accumulation, gene regulation 
and lateral root development.8,18 Hence, our results suggest that 
targeting HYH by both BBX24 and BBX25 could be a mech-
anism through which BBX24 and BBX25 regulate the HY5 
function via HYH. This proposed mechanism perfectly comple-
ments with our previous evidences demonstrating that BBX24 
and BBX25 regulate HY5 activity.1 In fact, we have shown that 
BBX24 and BBX25 repress BBX22 expression by interfering with 
HY5 transcriptional activity. Since HY5 is a central positive hub 
for photomorphogenesis, we suggest that the action of different 
mechanisms to keep on its function is crucial for the fine-tuning 
of seedling development.

Double B-Box Proteins Function as Transcriptional 
Co-Regulators

A group of zinc-finger proteins, which contain either one or 
two B-boxes in their N-terminal region, are called B-box pro-
teins. The functions of B-box protein family has been impli-
cated in the light mediated plant growth and developmental 
processes, such as photomorphogenesis, flowering, shade avoid-
ance and circadian rhythms.1,6,7,21,26 Recently, involvement of 

BBX24 Physically Interacts with HY5 through B-box 
Domain

The B-boxes in BBX21, BBX22 and BBX25 were found necessary 
for the interaction with HY5.1,6,7 To see whether also the B-boxes 
in BBX24 were required for the interaction with HY5, we indi-
vidually substituted three conserved Asp residues in the B-boxes 
to Ala and cloned in pYX141 vector. The substituted proteins in 
BBX24 were named B1 (D20A), B2 (D72A) and B3 (D81A). 
Two of these residues (D20 and D72) correspond to Zn2+ ligat-
ing residues in the B-box protein MIDLINE,20 and substitution 

Figure 1. BBX24 physically interacts with HY5 through its B-Boxes. B1, B2, B3 represent Asp 
to Ala substitutions in the B-boxes at positions 20 (B-box1), 72 and 81 (B-box2) residues, 
respectively, in the BBX24 protein. Yeast two-hybrid interactions of BBX24 and its mutated 
versions with HY5 as measured by β-Galactosidase enzymatic activity. Error bars indicate 
SD (n-6). The experiment is the representative of the one of the three independent experi-
ments. In the figure, 141 and pAS represent empty vectors pYX141 and pAS2-1, respectively.

Figure 2. BBX24 and BBX25 physically interact with HYH. Yeast two-
hybrid interactions of BBX24 and BBX25 with HYH as measured by 
β-Galactosidase enzymatic activity. Error bars indicate SD (n = 6). The 
experiment is the representative of one of the three independent 
experiments.
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these proteins in abscisic acid and brassinosteroid signaling has 
been reported.22,23 The fourth sub-family of B-box proteins con-
tain two tandem B-boxes in their N-terminal region, are called 
Double B-Box (DBB) proteins. There are eight DBB proteins 
in Arabidopsis: BBX18-BB25.24 Interestingly, out of eight, five 
have been reported to physically interact with COP1 (BBX20-
BBX22, BBX24-BBX25) and four (BBX21, BBX22, BBX24 and 
BBX25) have been reported to physically interact with HY5.1,6,7,25 
BBX21 and BBX22 function independently and co-operatively 
promoting photomorphogenic growth and pigment accumula-
tion and inhibiting hypocotyl length in shade.6,7,26,27 Genetic 
analysis of double mutants between BBX21 and BBX22 with 
COP1 and HY5 suggested that, they suppress COP1 functions, 
whereas enhance HY5 functions. The other two proteins such 
as BBX24 and BBX25 function additively as negative regulators 
of photomorphogenesis. Epistatic analysis with COP1 and HY5 
suggest that, BBX24 and BBX25 enhance the COP1 function, 
whereas they supress HY5 function. Surprisingly, BBX21-BBX22 
and BBX24-BBX25 pairs share ~70% homology at the amino 
acid level. Furthermore, BBX21, BBX22, BBX24 and BBX25 
physically interact with HY5 through its bZIP domain.1,6,7,25 
Whereas BBX24 and BBX25 suppress the HY5 function,1 it is 
not exactly known how BBX21 and BBX22 enhance the func-
tion of HY5.7 BBX32 has been also shown to negatively regulate 
the HY5 function by physically interacting with BBX21 (one of 
the probable HY5 co-activator) and forming inactive heterodi-
mers.28 Considering these evidences, we propose a model for the 
action of BBX24 and BBX25 together with COP1, HY5 and 
HYH (Fig. 3). The fine-tuning of developmental processes such 
as photomorphogenesis, skotomorphogenesis and gene regulation 
and pigment accumulation involve the balance between positive 
and negative regulators like as BBX proteins for the plant adjust-
ment to the changing light environments.

Figure 3. Working model of BBX25 and BBX24 interaction with HYH for 
the fine-tuning of Seedling De-etiolation. COP1 negatively regulates 
HYH and HY5 by degrading them. HYH enhances the function of HY5 
specifically in a blue light dependent manner, as it acts as co-activator 
of HY5. BBX24 and BBX25 could target HYH to put a check on HY5 
function via HYH by forming inactive heterodimers. BBX24 and BBX25 
enhance the function of COP1, but in a feedback regulatory loop COP1 
attenuates the function of BBX25 and BBX24 by degrading them in 
light.
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