640 research outputs found

    Magnetic incommensurability and fluctuating charge density waves in the repulsive Hubbard model

    Full text link
    Magnetic and charge susceptibilities of the two-dimensional repulsive Hubbard model are investigated applying a strong coupling diagram technique in which the expansion in powers of the hopping constants is used. For small lattices and high temperatures results are in agreement with Monte Carlo simulations. With the departure from half-filling xx the low-frequency magnetic susceptibility becomes incommensurate and the incommensurability parameter grows with xx. The incommensurability, its dependence on frequency and on xx resemble experimental results in lanthanum cuprates. Also for finite xx sharp maxima appear in the static charge susceptibility. The maxima are finite which points to the absence of the long-range charge ordering (static stripes). However, for x0.12x\approx 0.12 the maxima are located near the momenta (0,±π/2)(0,\pm\pi/2), (±π/2,0)(\pm\pi/2,0). In this case an interaction of carriers with tetragonal distortions can stabilize stripes with the wavelength of four lattice spacings, as observed in the low-temperature tetragonal phase of cuprates. As follows from the obtained results, the magnetic incommensurability is not a consequence of the stripes.Comment: 4 pages, 3 figures, manuscript for proceefings of LT2

    A planar diagram approach to the correlation problem

    Full text link
    We transpose an idea of 't Hooft from its context of Yang and Mills' theory of strongly interacting quarks to that of strongly correlated electrons in transition metal oxides and show that a Hubbard model of N interacting electron species reduces, to leading orders in N, to a sum of almost planar diagrams. The resulting generating functional and integral equations are very similar to those of the FLEX approximation of Bickers and Scalapino. This adds the Hubbard model at large N to the list of solvable models of strongly correlated electrons. PACS Numbers: 71.27.+a 71.10.-w 71.10.FdComment: revtex, 5 pages, with 3 eps figure

    Fluctuation Exchange Analysis of Superconductivity in the Standard Three-Band CuO2 Model

    Full text link
    The fluctuation exchange, or FLEX, approximation for interacting electrons is applied to study instabilities in the standard three-band model for CuO2 layers in the high-temperature superconductors. Both intra-orbital and near-neigbor Coulomb interactions are retained. The filling dependence of the d(x2-y2) transition temperature is studied in both the "hole-doped" and "electron-doped" regimes using parameters derived from constrained-occupancy density-functional theory for La2CuO4. The agreement with experiment on the overdoped hole side of the phase diagram is remarkably good, i.e., transitions emerge in the 40 K range with no free parameters. In addition the importance of the "orbital antiferromagnetic," or flux phase, charge density channel is emphasized for an understanding of the underdoped regime.Comment: REVTex and PostScript, 31 pages, 26 figures; to appear in Phys. Rev. B (1998); only revised EPS figures 3, 4, 6a, 6b, 6c, 7 and 8 to correct disappearance of some labels due to technical problem

    A new approach to strongly correlated fermion systems: the spin-particle-hole coherent-state path integral

    Full text link
    We describe a new path integral approach to strongly correlated fermion systems, considering the Hubbard model as a specific example. Our approach is based on the introduction of spin-particle-hole coherent states which generalize the spin-1/2 coherent states by allowing the creation of a hole or an additional particle. The action of the fermion system S[γ,γ;Ω]S[\gamma^*,\gamma;{\bf\Omega}] can be expressed as a function of two Grassmann variables (γ\gamma_\uparrow,γ\gamma_\downarrow) describing particles propagating in the lower and upper Hubbard bands, and a unit vector field Ω{\bf\Omega} whose dynamics arises from spin fluctuations. In the strong correlation limit, S[γ,γ;Ω]S[\gamma^*,\gamma;{\bf\Omega}] can be truncated to quartic order in the fermionic fields and used as the starting point of a strong-coupling diagrammatic expansion in t/Ut/U (tt being the intersite hopping amplitude and UU the on-site Coulomb repulsion). We discuss possible applications of this formalism and its connection to the t-J model and the spin-fermion model.Comment: 20 pages RevTex, 10 figure

    Self-consistent Green function approach for calculations of electronic structure in transition metals

    Full text link
    We present an approach for self-consistent calculations of the many-body Green function in transition metals. The distinguishing feature of our approach is the use of the one-site approximation and the self-consistent quasiparticle wave function basis set, obtained from the solution of the Schrodinger equation with a nonlocal potential. We analyze several sets of skeleton diagrams as generating functionals for the Green function self-energy, including GW and fluctuating exchange sets. Their relative contribution to the electronic structure in 3d-metals was identified. Calculations for Fe and Ni revealed stronger energy dependence of the effective interaction and self-energy of the d-electrons near the Fermi level compared to s and p electron states. Reasonable agreement with experimental results is obtained

    Toward a systematic 1/d expansion: Two particle properties

    Full text link
    We present a procedure to calculate 1/d corrections to the two-particle properties around the infinite dimensional dynamical mean field limit. Our method is based on a modified version of the scheme of Ref. onlinecite{SchillerIngersent}}. To test our method we study the Hubbard model at half filling within the fluctuation exchange approximation (FLEX), a selfconsistent generalization of iterative perturbation theory. Apart from the inherent unstabilities of FLEX, our method is stable and results in causal solutions. We find that 1/d corrections to the local approximation are relatively small in the Hubbard model.Comment: 4 pages, 4 eps figures, REVTe

    The Superconducting Instabilities of the non half-filled Hubbard Model in Two Dimensions

    Full text link
    The problem of weakly correlated electrons on a square lattice is formulated in terms of one-loop renormalization group. Starting from the action for the entire Brillouin zone (and not with a low-energy effective action) we reduce successively the cutoff Λ\Lambda about the Fermi surface and follow the renormalization of the coupling UU as a function of three energy-momenta. We calculate the intrinsic scale TcoT_{co} where the renormalization group flow crosses over from the regime (Λ>Tco\Lambda > T_{co}) where the electron-electron (e-e) and electron-hole (e-h) terms are equally important to the regime (Λ<Tco\Lambda < T_{co}) where only the e-e term plays a role. In the low energy regime only the pairing interaction VV is marginally relevant, containing contributions from all renormalization group steps of the regime Λ>Tco\Lambda > T_{co}. After diagonalization of VΛ=TcoV_{\Lambda =T_{co}}, we identify its most attractive eigenvalue λmin\lambda _{\min}. At low filling, λmin\lambda _{\min} corresponds to the B2B_2 representation (dxyd_{xy} symmetry), while near half filling the strongest attraction occurs in the B1B_1 representation (dx2y2d_{x^2-y^2} symmetry). In the direction of the van Hove singularities, the order parameter shows peaks with increasing strength as one approaches half filling. Using the form of pairing and the structure of the renormalization group equations in the low energy regime, we give our interpretation of ARPES experiments trying to determine the symmetry of the order parameter in the Bi2212 high-TcT_{c} compound.Comment: 24 pages (RevTeX) + 11 figures (the tex file appeared incomplete

    Reduction of Tc due to Impurities in Cuprate Superconductors

    Full text link
    In order to explain how impurities affect the unconventional superconductivity, we study non-magnetic impurity effect on the transition temperature using on-site U Hubbard model within a fluctuation exchange (FLEX) approximation. We find that in appearance, the reduction of Tc roughly coincides with the well-known Abrikosov-Gor'kov formula. This coincidence results from the cancellation between two effects; one is the reduction of attractive force due to randomness, and another is the reduction of the damping rate of quasi-particle arising from electron interaction. As another problem, we also study impurity effect on underdoped cuprate as the system showing pseudogap phenomena. To the aim, we adopt the pairing scenario for the pseudogap and discuss how pseudogap phenomena affect the reduction of Tc by impurities. We find that 'pseudogap breaking' by impurities plays the essential role in underdoped cuprate and suppresses the Tc reduction due to the superconducting (SC) fluctuation.Comment: 14 pages, 28 figures To be published in JPS

    An electron correlation originated negative magnetoresistance in a system having a partly flat band

    Full text link
    Inspired from an experimentally examined organic conductor, a novel mechanism for negative magnetoresistance is proposed for repulsively interacting electrons on a lattice whose band dispersion contains a flat portion (a flat bottom below a dispersive part here). When the Fermi level lies in the flat part, the electron correlation should cause ferromagnetic spin fluctuations to develop with an enhanced susceptibility. A relatively small magnetic field will then shift the majority-spin Fermi level to the dispersive part, resulting in a negative magnetoresistance. We have actually confirmed the idea by calculating the conductivity in magnetic fields, with the fluctuation exchange approximation, for the repulsive Hubbard model on a square lattice having a large second nearest-neighbor hopping.Comment: RevTex, 5 figures in Postscript, to be published in Phys. Rev.

    Knight Shift Anomalies in Heavy Electron Materials

    Full text link
    We calculate non-linear Knight Shift KK vs. susceptibility χ\chi anomalies for Ce ions possessing local moments in metals. The ions are modeled with the Anderson Hamiltonian and studied within the non-crossing approximation (NCA). The Kvs.χK-vs.- \chi non-linearity diminishes with decreasing Kondo temperature T0T_0 and nuclear spin- local moment separation. Treating the Ce ions as an incoherent array in CeSn3_3, we find excellent agreement with the observed Sn K(T)K(T) data.Comment: 4 pages, Revtex, 3 figures available upon request from [email protected]
    corecore