249 research outputs found

    Gravitating superconducting strings with timelike or spacelike currents

    Full text link
    We construct gravitating superconducting string solutions of the U(1)_{local} x U(1)_{global} model solving the coupled system of Einstein and matter field equations numerically. We study the properties of these solutions in dependence on the ratio between the symmetry breaking scale and the Planck mass. Using the macroscopic stability conditions formulated by Carter, we observe that the coupling to gravity allows for a new stable region that is not present in the flat space-time limit. We match the asymptotic metric to the Kasner metric and show that the relations between the Kasner coefficients and the energy per unit length and tension suggested previously are well fulfilled for symmetry breaking scale much smaller than the Planck mass. We also study the solutions to the geodesic equation in this space-time. While geodesics in the exterior space-time of standard cosmic strings are just straight lines, test particles experience a force in a general Kasner space-time and as such bound orbits are possible.Comment: 16 pages including 14 figure

    Geodesic motion in the space-time of cosmic strings interacting via magnetic fields

    Full text link
    We study the geodesic motion of test particles in the space-time of two Abelian-Higgs strings interacting via their magnetic fields. These bound states of cosmic strings constitute a field theoretical realization of p-q-strings which are predicted by inflationary models rooted in String Theory, e.g. brane inflation. In contrast to previously studied models describing p-q-strings our model possesses a Bogomolnyi-Prasad-Sommerfield (BPS) limit. If cosmic strings exist it would be exciting to detect them by direct observation. We propose that this can be done by the observation of test particle motion in the space-time of these objects. In order to be able to make predictions we have to solve the field equations describing the configuration as well as the geodesic equation numerically. The geodesics can then be classified according to the test particle's energy, angular momentum and momentum along the string axis. We find that the interaction of two Abelian-Higgs strings can lead to the existence of bound orbits that would be absent without the interaction. We also discuss the minimal and maximal radius of orbits and comment on possible applications in the context of gravitational wave emission.Comment: v1: 22 pages including 17 figures; v2: new figure added, section on observables added; acccepted for publication in Phys. Rev.

    Interactions of Cosmic Superstrings

    Get PDF
    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p,q)(p,q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.Comment: 22 pages, 6 figures; v2: updated reference

    Geodesic motion in the space-time of a cosmic string

    Full text link
    We study the geodesic equation in the space-time of an Abelian-Higgs string and discuss the motion of massless and massive test particles. The geodesics can be classified according to the particles energy, angular momentum and linear momentum along the string axis. We observe that bound orbits of massive particles are only possible if the Higgs boson mass is smaller than the gauge boson mass, while massless particles always move on escape orbits. Moreover, neither massive nor massless particles can ever reach the string axis for non-vanishing angular momentum. We also discuss the dependence of light deflection by a cosmic string as well as the perihelion shift of bound orbits of massive particles on the ratio between Higgs and gauge boson mass and the ratio between symmetry breaking scale and Planck mass, respectively.Comment: 20 pages including 14 figures; v2: references added, discussion on null geodesics extended, numerical results adde

    Scaling in a SU(2)/Z_3 model of cosmic superstring networks

    Get PDF
    Motivated by recent developments in superstring theory in the cosmological context, we examine a field theory which contains string networks with 3-way junctions. We perform numerical simulations of this model, identify the length scales of the network that forms, and provide evidence that the length scales tend towards a scaling regime, growing in proportion to time. We infer that the presence of junctions does not in itself cause a superstring network to dominate the energy density of the early Universe.Comment: 12pp, 3 fig

    Cosmic microwave anisotropies from BPS semilocal strings

    Full text link
    We present the first ever calculation of cosmic microwave background CMB anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter mu, from fits to cosmological data, and find that in this regard BPS semilocal strings resemble global textures more than topological strings. The observed microwave anisotropy at l = 10 is reproduced if Gmu = 5.3x10^{-6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is Gmu<2.0x10^{-6} when CMB data, Hubble Key Project and Big Bang Nucleosynthesis data are used (c.f. Gmu<0.9x10^{-6} for cosmic strings). We additionally carry out a Bayesian model comparison of several models with and without defects, showing models with defects are neither conclusively favoured nor disfavoured at present.Comment: 15 pages, 13 figures. Minor correction of numerical results, matches published versio

    Constraints on Brane Inflation and Cosmic Strings

    Full text link
    By considering simple, but representative, models of brane inflation from a single brane-antibrane pair in the slow roll regime, we provide constraints on the parameters of the theory imposed by measurements of the CMB anisotropies by WMAP including a cosmic string component. We find that inclusion of the string component is critical in constraining parameters. In the most general model studied, which includes an inflaton mass term, as well as the brane-antibrane attraction, values n_s < 1.02 are compatible with the data at 95 % confidence level. We are also able to constrain the volume of internal manifold (modulo factors dependent on the warp factor) and the value of the inflaton field to be less than 0.66M_P at horizon exit. We also investigate models with a mass term. These observational considerations suggest that such models have r < 2*10^-5, which can only be circumvented in the fast roll regime, or by increasing the number of antibranes. Such a value of r would not be detectable in CMB polarization experiment likely in the near future, but the B-mode signal from the cosmic strings could be detectable. We present forecasts of what a similar analysis using PLANCK data would yield and find that it should be possible to rule out G\mu > 6.5*10^-8 using just the TT, TE and EE power spectra.Comment: 11 pages, 3 figures, revtex4, typos corrected, references adde

    D-term inflation in non-minimal supergravity

    Get PDF
    D-term inflation is one of the most interesting and versatile models of inflation. It is possible to implement naturally D-term inflation within high energy physics, as for example SUSY GUTs, SUGRA, or string theories. D-term inflation avoids the η\eta-problem, while in its standard form it always ends with the formation of cosmic strings. Given the recent three-year WMAP data on the cosmic microwave background temperature anisotropies, we examine whether D-term inflation can be successfully implemented in non-minimal supergravity theories. We show that for all our choices of K\"ahler potential, there exists a parameter space for which the predictions of D-term inflation are in agreement with the measurements. The cosmic string contribution on the measured temperature anisotropies is always dominant, unless the superpotential coupling constant is fine tuned; a result already obtained for D-term inflation within minimal supergravity. In conclusion, cosmic strings and their r\^ole in the angular power spectrum cannot be easily hidden by just considering a non-flat K\"ahler geometry.Comment: 29 pages, 9 figures; minor changes to match publihed versio

    String Necklaces and Primordial Black Holes from Type IIB Strings

    Full text link
    We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.Comment: 45 pages, 9 figures, LaTeX; published versio
    • …
    corecore