448 research outputs found

    Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors

    Get PDF
    Intestinal cells are constantly produced from a stem cell reservoir that gives rise to proliferating transient amplifying cells, which subsequently differentiate into one of the four principal cell types. Signalling pathways, including the Notch signalling pathway, coordinate these differentiation processes and their deregulation may cause cancer. Pharmacological inhibition through γ-secretase inhibitors or genetic inactivation of the Notch signalling pathway results in the complete loss of proliferating crypt progenitors due to their conversion into post-mitotic goblet cells. The basic helix–loop–helix transcription factor Math1 is essential for intestinal secretory cell differentiation. Because of the critical roles of both Math1 and Notch signalling in intestinal homeostasis and neoplastic transformation, we sought to determine the genetic hierarchy regulating the differentiation of intestinal stem cells into secretory cells. In this paper, we demonstrate that the conversion of intestinal stem cells into goblet cells upon inhibition of the Notch signalling pathway requires Math1

    Continuous glucose monitoring metrics and pregnancy outcomes in insulin-treated diabetes : A post-hoc analysis of the GlucoMOMS trial

    Get PDF
    Funding Information: BWM is supported by a NHMRC investigatorgrant (GNT1176437) and BWM reports consultancy, travel support and research funding from Merck. All other authors declare no conflict of interest. The GlucoMOMS trial was funded by ZonMw, the Dutch Organisation for Health Research and Development, project number 80‐82310‐97‐11157. Continuous Glucose Monitors were purchased at a discount price at Medtronic®, Heerlen, The Netherlands. Neither ZonMw nor Medtronic had a role in study design, data collection, data analysis, data interpretation, or writing of the reports of either the original study or the current post hoc analysis. 10 Publisher Copyright: © 2023 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.Peer reviewedPublisher PD

    Conserved and divergent functions of Drosophila atonal , amphibian, and mammalian Ath5 genes

    Full text link
    Insect and vertebrate eyes differ in their formation, cellular composition, neural connectivity, and visual function. Despite this diversity, Drosophila atonal and its vertebrate Ortholog in the eye, Ath5 , each regulate determination of the first retinal neuron class—R8 photo-receptors and retinal ganglion cells (RGCs)—in their respective organisms. We have performed a cross-species functional comparison of these genes. In ato 1 mutant Drosophila , ectopic Xenopus Ath5 ( Xath5 ) rescues photoreceptor cell development comparably with atonal . In contrast, mouse Ath5 ( Math5 ) induces formation of very few ommatidia, and most of these lack R8 cells. In the developing frog eye, ectopic atonal , like Xath5 , promotes the differentiation RGCs. Despite strong conservation of atonal , Xath5 , and Math5 structure and shared function, other factors must contribute to the species specificity of retinal neuron determination. These observations suggest that the atonal family may occupy a position in a gene hierarchy where differences in gene regulation or function can be correlated with evolutionary diversity of eye development.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72909/1/j.1525-142X.2003.03058.x.pd

    10-Year cardiovascular event risks for women who experienced hypertensive disorders in late pregnancy: the HyRAS study

    Get PDF
    ABSTRACT: BACKGROUND: Cardiovascular disease is the cause of death in 32% of women in the Netherlands. Prediction of an individual's risk for cardiovascular disease is difficult, in particular in younger women due to low sensitive and specific tests for these women. 10% to 15% of all pregnancies are complicated by hypertensive disorders, the vast majority of which develop only after 36 weeks of gestation. Preeclampsia and cardiovascular disease in later life show both features of "the metabolic syndrome" and atherosclerosis. Hypertensive disorders in pregnancy and cardiovascular disease may develop by common pathophysiologic pathways initiated by similar vascular risk factors. Vascular damage occurring during preeclampsia or gestational hypertension may contribute to the development of future cardiovascular disease, or is already present before pregnancy. At present clinicians do not systematically aim at the possible cardiovascular consequences in later life after a hypertensive pregnancy disorder at term. However, screening for risk factors after preeclampsia or gestational hypertension at term may give insight into an individual's cardiovascular risk profile. METHODS: Women with a history of preeclampsia or gestational hypertension will be invited to participate in a cohort study 2,5 years after delivery. Participants will be screened for established modifiable cardiovascular risk indicators. The primary outcome is the 10-year cardiovascular event risk. Secondary outcomes include differences in cardiovascular parameters, SNP's in glucose metabolism, and neonatal outcome. DISCUSSION: This study will provide evidence on the potential health gains of a modifiable cardiovascular risk factor screening program for women whose pregnancy was complicated by hypertension or preeclampsia. The calculation of individual 10-year cardiovascular event risks will allow identification of those women who will benefit from primary prevention by tailored interventions, at a relatively young age. Trail registration The HYPITAT trial is registered in the clinical trial register as ISRCTN08132825

    The Role and Limitations of 18-Fluoro-2-deoxy-d-glucose Positron Emission Tomography (FDG-PET) Scan and Computerized Tomography (CT) in Restaging Patients with Hepatic Colorectal Metastases Following Neoadjuvant Chemotherapy: Comparison with Operative and Pathological Findings

    Get PDF
    BACKGROUND: Recent data confirmed the importance of 18-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in the selection of patients with colorectal hepatic metastases for surgery. Neoadjuvant chemotherapy before hepatic resection in selected cases may improve outcome. The influence of chemotherapy on the sensitivity of FDG-PET and CT in detecting liver metastases is not known. METHODS: Patients were assigned to either neoadjuvant treatment or immediate hepatic resection according to resectability, risk of recurrence, extrahepatic disease, and patient preference. Two-thirds of them underwent FDG-PET/CT before chemotherapy; all underwent preoperative contrast-enhanced CT and FDG-PET/CT. Those without extensive extrahepatic disease underwent open exploration and resection of all the metastases according to original imaging findings. Operative and pathological findings were compared to imaging results. RESULTS: Twenty-seven patients (33 lesions) underwent immediate hepatic resection (group 1), and 48 patients (122 lesions) received preoperative neoadjuvant chemotherapy (group 2). Sensitivity of FDG-PET and CT in detecting colorectal (CR) metastases was significantly higher in group 1 than in group 2 (FDG-PET: 93.3 vs 49%, P < 0.0001; CT: 87.5 vs 65.3, P = 0.038). CT had a higher sensitivity than FDG-PET in detecting CR metastases following neoadjuvant therapy (65.3 vs 49%, P < 0.0001). Sensitivity of FDG-PET, but not of CT, was lower in group 2 patients whose chemotherapy included bevacizumab compared to patients who did not receive bevacizumab (39 vs 59%, P = 0.068). CONCLUSIONS: FDG-PET/CT sensitivity is lowered by neoadjuvant chemotherapy. CT is more sensitive than FDG-PET in detecting CR metastases following neoadjuvant therapy. Surgical decision-making requires information from multiple imaging modalities and pretreatment findings. Baseline FDG-PET and CT before neoadjuvant therapy are mandatory

    Molecular Characterization of the Mouse Superior Lateral Parabrachial Nucleus through Expression of the Transcription Factor Runx1

    Get PDF
    The ability to precisely identify separate neuronal populations is essential to the understanding of the development and function of different brain structures. This necessity is particularly evident in regions such as the brainstem, where the anatomy is quite complex and little is known about the identity, origin, and function of a number of distinct nuclei due to the lack of specific cellular markers. In this regard, the gene encoding the transcription factor Runx1 has emerged as a specific marker of restricted neuronal populations in the murine central and peripheral nervous systems. The aim of this study was to precisely characterize the expression of Runx1 in the developing and postnatal mouse brainstem.Anatomical and immunohistochemical studies were used to characterize mouse Runx1 expression in the brainstem. It is shown here that Runx1 is expressed in a restricted population of neurons located in the dorsolateral rostral hindbrain. These neurons define a structure that is ventromedial to the dorsal nucleus of the lateral lemniscus, dorsocaudal to the medial paralemniscal nucleus and rostral to the cerebellum. Runx1 expression in these cells is first observed at approximately gestational day 12.5, persists into the adult brain, and is lost in knockout mice lacking the transcription factor Atoh1, an important regulator of the development of neuronal lineages of the rhombic lip. Runx1-expressing neurons in the rostral hindbrain produce cholecystokinin and also co-express members of the Groucho/Transducin-like Enhancer of split protein family.Based on the anatomical and molecular characteristics of the Runx1-expressing cells in the rostral hindbrain, we propose that Runx1 expression in this region of the mouse brain defines the superior lateral parabrachial nucleus

    Expression of Neurog1 Instead of Atoh1 Can Partially Rescue Organ of Corti Cell Survival

    Get PDF
    In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1KINeurog1) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1+/KINeurog1) and homozygous (Atoh1KINeurog1/KINeurog1) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete ‘flat epithelium’ in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1f/+), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1KINeurog1 can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons
    corecore