6,552 research outputs found
On the Mapping of Time-Dependent Densities onto Potentials in Quantum Mechanics
The mapping of time-dependent densities on potentials in quantum mechanics is
critically examined. The issue is of significance ever since Runge and Gross
(Phys. Rev. Lett. 52, 997 (1984)) established the uniqueness of the mapping,
forming a theoretical basis for time-dependent density functional theory. We
argue that besides existence (so called v-representability) and uniqueness
there is an important question of stability and chaos. Studying a 2-level
system we find innocent, almost constant densities that cannot be constructed
from any potential (non-existence). We further show via a Lyapunov analysis
that the mapping of densities on potentials has chaotic regions in this case.
In real space the situation is more subtle. V-representability is formally
assured but the mapping is often chaotic making the actual construction of the
potential almost impossible. The chaotic nature of the mapping, studied for the
first time here, has serious consequences regarding the possibility of using
TDDFT in real-time settings
Combustion chemistry of solid propellants
Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process
Probing Slepton Mass Non-Universality at e^+e^- Linear Colliders
There are many models with non-universal soft SUSY breaking sfermion mass
parameters at the grand unification scale. Even in the mSUGRA model scalar mass
unification might occur at a scale closer to M_Planck, and renormalization
effects would cause a mass splitting at M_GUT. We identify an experimentally
measurable quantity Delta that correlates strongly with delta m^2 =
m^2_{selectron_R}(M_GUT) - m^2_{selectron_L}(M_GUT), and which can be measured
at electron-positron colliders provided both selectrons and the chargino are
kinematically accessible. We show that if these sparticle masses can be
measured with a precision of 1% at a 500 GeV linear collider, the resulting
precision in the determination of Delta may allow experiments to distinguish
between scalar mass unification at the GUT scale from the corresponding
unification at Q ~ M_Planck. Experimental determination of Delta would also
provide a distinction between the mSUGRA model and the recently proposed
gaugino-mediation model. Moreover, a measurement of Delta (or a related
quantity Delta') would allow for a direct determination of delta m^2.Comment: 15 pages, RevTeX, 4 postscript figure
The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models
In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is
assumed that SUSY breaking on a hidden brane is communicated to the visible
brane via gauge superfields which propagate in the bulk. This leads to GUT
models where the common gaugino mass is the only soft SUSY breaking
term to receive contributions at tree level. To obtain a viable phenomenology,
it is assumed that the gaugino mass is induced at some scale beyond the
GUT scale, and that additional renormalization group running takes place
between and as in a SUSY GUT. We assume an SU(5) SUSY GUT above
the GUT scale, and compute the SUSY particle spectrum expected in models with
inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the
inoMSB model, and compute the SUSY reach including cuts and triggers approriate
to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the
Tevatron collider in the trilepton channel. %either with or without %identified
tau leptons. At the CERN LHC, values of (1160) GeV can be probed
with 10 (100) fb of integrated luminosity, corresponding to a reach in
terms of of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely
only be differentiated at a linear collider with sufficient energy to
produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure
Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider
While the SUSY flavor, CP and gravitino problems seem to favor a very heavy
spectrum of matter scalars, fine-tuning in the electroweak sector prefers low
values of superpotential mass \mu. In the limit of low \mu, the two lightest
neutralinos and light chargino are higgsino-like. The light charginos and
neutralinos may have large production cross sections at LHC, but since they are
nearly mass degenerate, there is only small energy release in three-body
sparticle decays. Possible dilepton and trilepton signatures are difficult to
observe after mild cuts due to the very soft p_T spectrum of the final state
isolated leptons. Thus, the higgsino-world scenario can easily elude standard
SUSY searches at the LHC. It should motivate experimental searches to focus on
dimuon and trimuon production at the very lowest p_T(\mu) values possible. If
the neutralino relic abundance is enhanced via non-standard cosmological dark
matter production, then there exist excellent prospects for direct or indirect
detection of higgsino-like WIMPs. While the higgsino-world scenario may easily
hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider
operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access
the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure
Target dark matter detection rates in models with a well-tempered neutralino
In the post-LEP2 era, and in light of recent measurements of the cosmic
abundance of cold dark matter (CDM) in the universe from WMAP, many
supersymmetric models tend to predict 1. an overabundance of CDM and 2.
pessimistically low rates for direct detection of neutralino dark matter.
However, in models with a ``well-tempered neutralino'', where the neutralino
composition is adjusted to give the measured abundance of CDM, the neutralino
is typically of the mixed bino-wino or mixed bino-higgsino state. Along with
the necessary enhancement to neutralino annihilation rates, these models tend
to give elevated direct detection scattering rates compared to predictions from
SUSY models with universal soft breaking terms. We present neutralino direct
detection cross sections from a variety of models containing a well-tempered
neutralino, and find cross section asymptotes with detectable scattering rates.
These asymptotic rates provide targets that various direct CDM detection
experiments should aim for. In contrast, in models where the neutralino mass
rather than its composition is varied to give the WMAP relic density via either
resonance annihilation or co-annihilation, the neutralino remains essentially
bino-like, and direct detection rates may be below the projected reaches of all
proposed experiments.Comment: 13 pages including 1 EPS figur
The importance of tau leptons for supersymmetry searches at the Tevatron
Supersymmetry is perhaps most effectively probed at the Tevatron through
production and decay of weak gauginos. Most of the analyses of weak gaugino
observables require electrons or muons in the final state. However, it is
possible that the gauginos will decay primarily to tau leptons, thus
complicating the search for supersymmetry. The motivating reasons for high tau
multiplicity final states are discussed in three approaches to supersymmetry
model building: minimal supergravity, gauge mediated supersymmetry breaking,
and more minimal supersymmetry. The concept of ``e/mu/tau candidate'' is
introduced, and an observable with three e/mu/tau candidates is defined in
analog to the trilepton observable. The maximum mass reach for supersymmetry is
then estimated when gaugino decays to tau leptons have full branching fraction.Comment: 9 pages, latex, 2 figures. Presented at the D0 New Phenomena
Workshop, UC Davis, 26-28 March 199
Impact of Muon Anomalous Magnetic Moment on Supersymmetric Models
The recent measurement of a_\mu =\frac{g_\mu -2}{2} by the E821 Collaboration
at Brookhaven deviates from the quoted Standard Model (SM) central value
prediction by 2.6\sigma. The difference between SM theory and experiment may be
easily accounted for in a variety of particle physics models employing weak
scale supersymmetry (SUSY). Other supersymmetric models are distinctly
disfavored. We evaluate a_\mu for various supersymmetric models, including
minimal supergravity (mSUGRA), Yukawa unified SO(10) SUSY GUTs, models with
inverted mass hierarchies (IMH), models with non-universal gaugino masses,
gauge mediated SUSY breaking models (GMSB), anomaly-mediated SUSY breaking
models (AMSB) and models with gaugino mediated SUSY breaking (inoMSB). Models
with Yukawa coupling unification or multi-TeV first and second generation
scalars are disfavored by the a_\mu measurement.Comment: 25 page REVTEX file with 10 PS figures. Minor rewording, typos
corrected, references adde
Ammonium-perchlorate diffusion flames - A spectrographic investigation
Spectroscopic analyses on ammonium perchlorate diffusion flames with various fuel
Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter
In supersymmetric models with non-universal gaugino masses, it is possible to
have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the
gaugino eigenstates experience little mixing so that the lightest SUSY particle
remains either pure bino or pure wino. The neutralino relic density can only be
brought into accord with the WMAP measured value when bino-wino co-annihilation
(BWCA) acts to enhance the dark matter annihilation rate. We map out parameter
space regions and mass spectra which are characteristic of the BWCA scenario.
Direct and indirect dark matter detection rates are shown to be typically very
low. At collider experiments, the BWCA scenario is typified by a small mass gap
m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays
of \tilde Z_2 are not allowed. However, in this case the second lightest
neutralino has an enhanced loop decay branching fraction to photons. While the
photonic neutralino decay signature looks difficult to extract at the Fermilab
Tevatron, it should lead to distinctive events at the CERN LHC and at a linear
e^+e^- collider.Comment: 44 pages, 21 figure
- …