364 research outputs found

    Extension of the generalized multipole technique to three-dimensional anisotropic scatterers

    Get PDF
    New expansions are derived for the simulation of three-dimensional anisotropic scatterers with the generalized multipole technique (GMT). This extension of the GMT makes possible the investigation of subtle phenomena such as the interaction of light with realistic crystals or magneto-optic materials. (C) 1998 Optical Society of America

    Electromagnetic scattering in polarizable backgrounds

    Get PDF
    We develop a fully vectorial formalism for the investigation of electromagnetic scattering in polarizable backgrounds, i.e., where the scatterers are not in vacuum but situated in a medium with a dielectric permittivity different from unity. Our approach is based on the Green's tensor technique and the corresponding Green's tensors for two-dimensional (2D) and three-dimensional (3D) systems are developed. The analysis of 2D systems is not restricted to the case where transverse electric (TE) and transverse magnetic (TM) modes are decoupled, but treated in a general manner. Practical examples illustrate the application of the method: scattering by a microcavity for two dimensions and color formation in opal for three dimensions

    Increasing the performance of the coupled-dipole approximation: A spectral approach

    Get PDF
    We show that it is possible to increase the performance of the coupled-dipole approximation (CDA) for scattering by using concepts from the sampling theory. In standard CDA, the source in each discretized cell is represented by a point dipole and the corresponding scattered field given by Green's tensor. In the present approach, the source has a certain spatial extension, and the corresponding Green's tensor must be redefined. We derive these so-called filtered Green's tensors for one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) systems, which forms the basis of our new scheme: the filtered coupled-dipole technique (FCD)

    Energy flow in light-coupling masks for lensless optical lithography

    Get PDF
    We illustrate the propagation of light in a new type of coupling mask for lensless optical lithography. Our investigation shows how the different elements comprising such masks contribute to the definition of an optical path that allows the exposure of features in the 100-nm-size range in the photoresist. (C) 1998 Optical Society of Americ

    Inclusive Heavy-Flavor Production from Nuclei

    Full text link
    We describe a light-cone wave function formulation for hadroproduction of heavy-flavors at high energies. At moderate values of xFx_F heavy-flavor production can be viewed as a diffractive excitation of heavy quark-antiquark Fock states, present in the interacting gluon from the projectile. The approach developed here is well suited to address coherence effects in heavy-quark production from nuclei at small values of x_{t} \lsim 0.1\cdot A^{-1/3}.Comment: 14 pages with 3 figures. To appear in Z. Phys.

    Shadowing, Binding and Off-Shell Effects in Nuclear Deep Inelastic Scattering

    Full text link
    We present a unified description of nuclear deep inelastic scattering (DIS) over the whole region 0<x<10<x<1 of the Bjorken variable. Our approach is based on a relativistically covariant formalism which uses analytical properties of quark correlators. In the laboratory frame it naturally incorporates two mechanisms of DIS: (I) scattering from quarks and antiquarks in the target and (II) production of quark-antiquark pairs followed by interactions with the target. We first calculate structure functions of the free nucleon and develop a model for the quark spectral functions. We show that mechanism (II) is responsible for the sea quark content of the nucleon while mechanism (I) governs the valence part of the nucleon structure functions. We find that the coherent interaction of qˉq\bar qq pairs with nucleons in the nucleus leads to shadowing at small xx and discuss this effect in detail. In the large xx region DIS takes place mainly on a single nucleon. There we focus on the derivation of the convolution model. We point out that the off-shell properties of the bound nucleon structure function give rise to sizable nuclear effects.Comment: 29 pages (and 10 figures available as hard copies from Authors), REVTE

    Peripheral heavy ion collisions as a probe of the nuclear gluon distribution

    Get PDF
    At high energies a quark-gluon plasma is expected to be formed in heavy ion collisions at RHIC and LHC. The theoretical description of these processes is directly associated to a complete knowledge of the details of medium effects in the nuclear gluon distribution. In this paper we analyze the possibility to constraint the behavior of this distribution considering peripheral heavy ion collisions. We reanalyze the photoproduction of heavy quarks for the deduction of the in-medium gluon distribution using three current parameterizations for this parton distribution. Moreover, we show that the elastic photoproduction of vector mesons is a potential process to probe the nuclear gluon distribution.Comment: 8 figures, accepted for publication in Physicsl review

    Return of the EMC Effect: Finite Nuclei

    Full text link
    A light front formalism for deep inelastic lepton scattering from finite nuclei is developed. In particular, the nucleon plus momentum distribution and a finite system analog of the Hugenholtz-van Hove theorem are presented. Using a relativistic mean field model, numerical results for the plus momentum distribution and ratio of bound to free nucleon structure functions for Oxygen, Calcium and Lead are given. We show that we can incorporate light front physics with excellent accuracy while using easily computed equal time wavefunctions. Assuming nucleon structure is not modified in-medium we find that the calculations are not consistent with the binding effect apparent in the data not only in the magnitude of the effect, but in the dependence on the number of nucleons.Comment: 11 pages, 6 figure

    Nuclear Shadowing in a Parton Recombination Model

    Full text link
    Deep inelastic structure functions F2A(x)F_2^A(x) are investigated in a Q2Q^2 rescaling model with parton recombination effects. We find that the model can explain experimentally measured F2A(x)F_2^A(x) structure functions reasonably well in the wide Bjorken−x-x range (0.005<x<0.80.005<x<0.8). In the very small xx region (x<0.02x<0.02), recombination results are very sensitive to input sea-quark and gluon distributions.Comment: preprint MKPH-T-93-04, IU/NTC 92-20, 25 pages, TEX file (without Figs. 1-14)., (address after April 1: Saga U., Japan
    • 

    corecore