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Electromagnetic scattering in polarizable backgrounds
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We develop a fully vectorial formalism for the investigation of electromagnetic scattering in polarizable
backgrounds, i.e., where the scatterers are not in vacuum but situated in a medium with a dielectric permittivity
different from unity. Our approach is based on the Green’s tensor technique and the corresponding Green’s
tensors for two-dimensiongRD) and three-dimensiondBD) systems are developed. The analysis of 2D
systems is not restricted to the case where transverse el€fiand transverse magnetitM) modes are
decoupled, but treated in a general manner. Practical examples illustrate the application of the method: scat-
tering by a microcavity for two dimensions and color formation in opal for three dimensions.
[S1063-651%98)13409-9

PACS numbsds): 42.25.Bs, 42.25.Fx, 42.68.Mj, 02.60.Cb

I. INTRODUCTION Il. FORMALISM

. . . . . A. Solution of the scattering problem
There are many physical situations that involve scattering

in a polarizable background, i.e., where the scatterers are not L&t us consider a scattering system described by a dielec-
in vacuum but situated in a medium with a dielectric permit-tric_function &(r) embedded in an infinite homogeneous
tivity different from unity. background_ medlunjsB [throughout.the paper we assume
Such situations arise, for example, in the investigation oflonmagnetic materials and an expft) time dependence
scatterers distributed in an infinite system, like bubbles andor the fieldd. The scattering system does not need to be
dust grains in deep antarctic i¢&], inclusions in crystals homogeneous; furthermore it can be composed by several
[2—4], point defects in semiconductdis], or in the study of distinct bodies embe_ddeq in the infinite background. When
the optical properties of colloids in solutiof§]. the background medium is not vacuueg 1), the scatter-
One also comes across scattering in polarizable backers may have a lower permittivity(r) than eg. Finally,
grounds when investigating a particular subpart of a complexgalistic metals can be considered by using a complex value
system. Indeed, it can often be assumed, with a large systerdielectric function.
that the surroundings of the subpart extend to infinity. This When this system is illuminated by an incident fi&f(r)
has recently been illustrated in the study of light couplingPropagating in the background medium, the total electric
between a local probe microscope tip and a surfage field (|_nC|dent field pI.us scattered figlds a solution of the
The aim of this paper is to develop a general formalismvectorial wave equation
able to handle such situations. Our approach is based on the
volume integral equation for scatterinzpand we will develop VX VXE(r) —kge(r)E(r) =0, @
the corresponding Green’s tensors both for two-dimensional T
(2D) and three-dimensiondBD) systems. Furthermore, the Whereko=w/c” is the vacuum wave number. _
link between 2D and 3D geometries will be emphasized and Although the present formalism can easily handle aniso-
2D systems will be treated in a completely general mannertropic scatterers qlesc_rl_bed by a _tensona_ll dlele_ctrlc function,
Since we will restrict the present study to infinite homo- fqr the _sake of_ simplicity we I|m|t_ the d_|scu55|on to_ scalar
geneous backgrounds, one should note that another class @glectric functions. To take a dielectric tensefr) into
reference systems, namely, surfaces and multilayered sufccount, the reader should simply replace in the formulas the
strates, has been developed for the Green’s tensor techniqBgPduct s(r)E(r) with the corresponding contraction
[8—10]. The material developed in the present work can als@(r) - E(r). ] )
be used in conjunction with these complex reference sys- Introducing the dielectric contrast
tems; for example, a subsurface scatterer is merely a scatterer
placed in a polarizable backgrourithe substrate in that As(r)=e(r)—sg, )
case.
Te)he formalism is developed in Sec. Il, where Green'sWe can rewrite Eq(1) as an inhomogeneous equation,
tensors for 2D and 3D systems are derived and a practical

2 _ 2
numerical implementation discussed. This technique is then VXVXE(r) —koegE(r) =kpAe(r)E(r), (©)
illustrated with two examples of applications in Sec. Ill and o o .
our work is summarized in Sec. IV. where the incident fieldE”(r) must be a solution of the

corresponding homogeneous equation:

2 _
*Electronic address: martin@ifh.ee.ethz.ch VX VXEY(r)—kgegE%(r)=0. (4)
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To compute the total fieldE(r), let us introduce Green’s Introducing the discretized fiel,=E(r;), the discretized
tensorGB(r,r’) associated with the infinite backgroung. dielectric contrasi\e;=Aeg(r;) and the discretized Green's
This dyadic is a solution of the vector wave equatiénwith tensorGﬁszB(ri .r;)), we can rewrite Eq(7) as a dense
a point source terml1]: system of linear equations:

VX VXGE(r,r')—k3egGB(r,r')=18(r—r'), (5 N
Ei:EiO'f'l 2 ) GEJkSASJEJVJ+M|k%A8|E|
wherel is the unit dyad. =1

Introducing Eq.(5) into Eq. (3), it is a simple matter to Ae,
find that the total fieldE(r) is given by —L- s_Ei , 1=1,... N, (8)

B
E(r)=E0(r)+f dr'GB(r,r')-k3As(r')E(r'), (6)  Wwith
v
where the integration runs over the entire scatterer vome M= “mofv Wdr'GB(ri ). 9
V— i~

In the next subsections, where we derive Green’s tensors
for 2D and 3D systems, we will see thaP(r,r’) diverges )
for r=r’. Therefore, whenever bothandr’ are inside the The value of the self-ter; is usually small compared
scatterer volum®, the principal value must be taken for the {0 the other terms in Eq(8) and several authors simply set
integral in Eq.(6) and the singularity of the Green’s tensor Mi=0. Nevertheless, our experience shows tMatplays a

treated separately. This is emphasized by rewriting(Bigas ~ "On-negligible role for the accuracy of the resitt$]. The
value ofM; can then be obtained by numerical quadrature of

Eqg. (99 on meshi. Another approach consists in mapping
E(r)=E%r)+ lim J dr' GB(r,r')-k3Ae(r')E(r") meshi onto a mesh with a simpler shape, so that @®jcan
V-6V

V-0 be evaluated analytically. This last approach gives extremely
A good results for mesh shapes close to cubic meshes in three
e(r) ; : . . ) )
—L. E(r), 7) dimensions and to square meshes in two dimensions. This
€B covers most practical situations and the corresponding values
o o for M; will be given in the next two subsections.
where the infinitesimal voluméV centered at the pOIrltls Several numerical methods can be used to solve the sys-

used to exclude the singularity. The source dyadiepends tem of equationg8). It is important to note that when the

on the shape of the exclusion volun®¥'. Its derivation is  dielectric contrast is strong or the scatterer volume impor-

given with much detail by YaghjiafiL2]. Practical values of  tant, the condition number of the matrix associated with Eq.

L for 2D and 3D systems will be given in the next subsec-(8) becomes quite large, thereby requiring an extremely

tions. Note the important facterg in theL term of Eq.(7);  stable linear algebra solver. lterative solvers such as conju-

this factor does not appear in the work of Yaghjian as thisgate gradients seem particularly well suited for that fask.

author only considers scattering in vacuum. To conclude this section, let us mention that an alternate
When the observation poimtis located outside the scat- form of Eq. (6) exists:

terer, no singularity shows up since the integration in &Y.

is limited to the scatterer volume. Actually, E() shows

that the field at any point in the background is entirely de- E(f):EO(FHJ dr'G(r,r')-kjAe(r')E(r'). (10)

termined from the field inside the scatterer. This can be used v

to split the calculation: in a first step only the field inside the . L .

scatterer is computed and stored; the field at any desired Wh”e. Eq. (6) represents anmplicit quanon[the un-

location in the background being then computed at a |atek_nown f|e.Id.E(r) appears also qnder the mteQrdf.q. (10.)

stage. gives explicitly this unknowned field from the incident field

Different approaches can be used to solve @gnumeri- E%(r). The dyadicG(r,r') in Eq. (10) represents Green’s
cally. We will here briefly present the discrete dipole ap—tensor of the comple;e syste(ii]omoger)eous background
proximation (DDA, also known as the coupled dipole ap- PlUS scatterejsand fulfills Dyson’s equation,
proximation, CDA since it is quite simple to implement
pumerically an.d has proven to be most u_seful for investigat- G(r,r’)=GB(r,r’)+J dr"GB(r,r"). kSAs(r”)G(r”,r’).
ing the scattering by arbitrary shape partidlé8]. An alter- v
native numerical approach would be to use finite elements 11
[14].

To solve Eq.(7) numerically, let us define a grid witN Equation(11) is the counterpart for Green’s tensor of Eg).
meshes over the system. Each me&h centered at position Aside from Eq.(10), Green’s tenso6G(r,r’) finds numerous
r, and has a volumé&/;, i=1,... N (for 2D systemsV; applications in electromagnetics, where the response of a
represents the area of the mgsh regular mesh with con- complex system is requirefd7]. It can also be applied to
stant volume Yis not mandatory and a higher mesh refine-rather subtle situations such as the investigation of the elec-
ment can be used where a precise knowledge of the field isomagnetic interaction of fluorescent molecules with their
required or where the dielectric contrast(r) is large. surrounding 18] or in spectroscopy19].
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B. 3D Green'’s tensor

Green’s tensoGB(r,r’) for an infinite homogeneous 3D
background mediunag is readily obtained fronf20]

B ' Vv B ’
G=(r,r')= 1+F Osp(r,r'), (12
B
where
exp(ikgR)
O8o(r 1) === (13

is the scalar Green’s function associated with the back-

ground, R=|R|=|r—r’| the relative distance between
source and observation points, aiglis the wave number in
the background medium:
2
kzzw_
B Cz

€g. (14

Introducing Eq.(13) into Eq. (12) leads to the explicit
form of GB(r,r’):
ikgR—1
L+ =5
3—3ikgR—k3R?
k3R*

explikgR)
47R

. (15

Since the scalar Green’s function only depends on the

absolute relative distancR, Green’s tensor is reciprocal,
GB(r,r')=GB(r’,r); furthermore, the (X3) matrix that
represents Green’s tensor is also symmetrical:
B B B
Gxx ny ze
GB(rar,): G)l?y G)?y G?z
B B B
ze Gyz Gzz

(16)

Finally, it is interesting to note thaB®(r,r’) contains both
far-field and near-field terms. While the former have aR 1/
dependence, the latter haveRi/and 1R® dependences.

For the self-ternM;, integration of Eq(9) on a spherical
mesh with effective radiug®",

3 1/3
RF= (Evi) , (17)
and spherical exclusion volum#&/, leads to
2 : ff B eff
M;=—[(1—ikgR) exp(ikgR™) —1]1 (18
and the corresponding source dyadi¢ig]
L=11. (19
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FIG. 1. lllustration of a 2D system. Although the geometry is
invariant in thez direction and its study can be restricted to ¥g
plane, the electromagnetic field needs not propagate in this plane
and the incident fieldE® can impinge on the system with an angle
0,#90°. Two different polarizations for the incident field can be
consideredp polarization, where the electric field is parallel to the
plane of incidence and polarization, where it is orthogonal. When
0,=90°, p polarization is referred to as TM arglpolarization as
TE.

Let us conclude this subsection with a remark on the
physical signification of Green'’s tensor for a 3D system:
GB(r,r’) simply represents the electric field radiated at loca-
tion r by three orthogonal unit dipolegoint sourcek lo-
cated atr'. More precisely, each colunig, of Green'’s ten-
sor (16),

B
Gxu

B
Gy

B
qu

E,= ,  U=Xx,y,z, (20)

represents the three components of the electric field radiated
by a unit dipole parallel to the axis.

C. 2D Green’s tensor

Before developing Green’s tensor for a 2D system, it
seems appropriate to say a few words about 2D geometries
and their relation to 3D systems. A 2D geometry simply
proceeds from a 3D system that exhibits a translation sym-
metry in one direction, like the infinite cylinder in Fig. 1.
The study of such a 3D system can therefore be restricted to
a plane orthogonal to the translation axis of the system (
plane in Fig. ).

It is, however, not necessary that the electromagnetic field
also propagates in that plane and, for example, the incident
field can impinge on the cylinder with a propagation vector
kg nonparallel to thex-y plane (¢;#90°, Fig. 1. In that
case, all three, y, andz components of the electric field are
coupled together and Green'’s tensor takes a similar form to
that of Eq.(16).

On the other hand, when the field propagates inxthe
plane kg=k,, 6;=90°, Fig. ), two distinct polarization
modes can be excited: transverse eledffie) mode, where
the electric field has only twa, y components and trans-

Thus we have all the different terms required by the systenverse magneti¢TM) mode, where the field has only one

of equationg8) for a 3D geometry.

single z component. In this case the elements of Green's
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tensor(16) that couplex or y with z vanish and the two with
polarization modes are decoupled. Thus, when the incident
field has a given polarization, the scattered field has the same

R i k2co<( )
polarization. GE il H(k
Let us define the transverse coordinpte App)= 4 ké o(k»@)
r=(p,2)=(xy,2) (21) i k,cog26)

1" 2, Hukee),

and the transverse wave vectgy: kge

kg=(K,,K,), (22 o
GB i kpsm(20)H ‘

k,=|k,|. (23 xy(P.P )—4 212 2(k,0),

As for 3D systems, Green’s tensor for 2D geometries only
depends on the relative position of the source and observa-

1 k k,cog 6)

tion points; it is therefore convenient to use the relative co- GXBZ(p,p’):Z > Hy(k,0),
ordinate kg
e=p—p'=[ecogh),osin(f)]=(x—x"y—-y"). _ _
(24) 5 N k2sir?(6)
Gyypp')=71 e Ho(k,0)
Green’s tensoGB(p,p’) for a 2D system can either be B
developed in Fourier spad®1] or deduced from the 2D i k cog26)
Green'’s function, —— Lt ———H(k,0)
4 2 1 pQ ’
kg
g5p(r.r')= Ho(k e)explik,z), (25)
1 k k,sin(0)
B N _PZ
where we use for simplicity the notation; fbr the Hankel GyAp.p )_4 k3 M0,
function of the first kind K" [12].
To derive the scalar Green'’s functi¢25) let us recall the
physical meaning of Green’s tensor: while in three dimen- B o k?
sions it is associated with a point source, Green’s tensor for GAp.p ):Z 1- k—2 Ho(k,0).
B

a 2D system represents the field generated in an observation
planez=const by an infinite line source extending in the
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(30

(31

(32)

(33

(34)

(39

direction with an expk,2) dependence. Green’s function Note that one can also replacg With a combination of K

g5p(r,r') is then readily obtained by integration over this and H,, using the recurrence formulas for Hankel functions.

line source: When the incident field propagates in the/ plane(i.e.,
k,=Kg, k,=0, Fig. 1), Green’s tensor reduces to the form

g?D(r,r’)=j dz' g8,(r,r" ) expik,z") (26) GE GE o
S XX Xy
G(pp)=| Gy Gy O |, (36)
»  exgikgyx®+y?+(z—z )2] o B
=| dZ exp(ik,z’) 0 0 G
e A X2+y?+(z—2")?
(27 with
—Hy(k,0)exp(ik,z) (28 B ! A cod26)
_4 0 pQ z=/ Gxx(pvp )=_5| (G)HO(ka)+4W 1(ka),
. (37)
where we have assumed that the line source was located at
x"=y’=0. The integration of Eq(27) is easily carried out i sin(26)
with the help of Eq(3.876 in Ref.[22]. (p p)= 1 Ha(k,0), (39
Application of Eq.(12) to gED(r,r’) as defined by Eq.
(25) and evaluation of the result fa=0 gives Green’s ten- p
sor for an infinite homogeneous 2D systeR: (p p)= —cosz( O)Ho(k,0) - # Ha(k,0)
4 N '
Gyx Gy, G, (39
GB(p.p)=| Gy Gy G|, (29 . |
GE, GP, G& GzApp') =4 Ho(k,0). (40)
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The form of Eq.(36) emphasizes the two independent
polarizations that can be excited in that case. For TE polar-
ization the electric field has only tww, y components and
GB(p,p’) reduces to a (X2) matrix; for TM polarization
the electric field becomes a scalane singlez component
and Green’s tensor reduces to the scalar Green’s function
(25) with z=0.

Integration of Eq.(9) on a circular mesh centered g
with effective radiusR®",

FIG. 2. An elliptical air microcavity in a glass background and
ai [ Vi M2 with a cylindrical glass core is illuminated by a plane wave propa-
R = Py (41) gating in thek, direction. The radius of the cylindrical core is
0.5 um and the ellipse semiaxis are Am and 2 wm. Since both
the core and the background have the same permittivignly the
leads to the value d¥4;: air cavity must be discretizethatched area

] jugate gradients algorithm combined with fast-Fourier trans-

i

Lay 0 0 form [13].

- A. 2D example: Scattering in a microcavity

M= 0 oy O : (42) The scattering by 2D cylindrical structures has always

) attracted much intere§23—27. This interest has been aug-
0 0 I—Wﬁy mented recently by the use of cylinders to model the electro-

2 magnetic interactions in local probe microscof®8-30.

Here we would like to use such a configuration to illustrate

the coupling between the different field components that can

arise when the incident field does not propagate inxtye

plane 6,#90°, Fig. 1.

Let us consider an infinite glass cylinder of permittivity
£=2.25 surrounded by an elliptical air cavitg €1) and
embedded in a glass backgroungs € 2.25, Fig. 2. Since
both the cylinder and the background have the same permit-

tivity, only the air cavity needs to be discretized. Note that
p=1- k_z (44) the associated dielectric contrast(r) is then negative, as
B the cavity has a lower permittivity than its surrounding me-
dium. The wavelength in vacuum for all the simulations pre-
i o 2 sented in this section is 633 nm and the discretization mesh
r= MR+ — 5. 49 7% 67 nnt.
P P We report in Fig. 83 the total field intensity for an

When TE and TM polarizations are decoupled, we have irs-polarized field incident ap;=35° on the system. For this
addition a=8=1 configuration we observe a very strong scattering at the pe-

- : riphery of the ellipse; on the other hand, almost no field is
The corresponding source dyadic for a 2D systefit coupled to the central cylinder. Note also the interference
pattern, caused by the interaction of the incoming wave with
0 the reflected one.
ol (46) For this polarization, the incident field has ontyandy
0

with

(43

components. Nevertheless, the interaction of this incident
field with the scattering system leads to an additianebm-
ponent in the scattered field, as illustrated in Fig)3
Thus we have all the different elements required for investi- At first sight, the fact that an additional field component
gating 2D and 3D scatterers in polarizable backgrounds. can be created during the scattering process, even for a trans-
lation symmetrical system, might appear to be quite surpris-
IIl. EXAMPLES OFE APPLICATIONS ing. Actually, a similar situation occurs when aspolarized
plane wave impinges on a tilted interface: the field transmit-
The aim of this section is to illustrate the application of ted through the interface also exhibits an additional compo-
this approach for 2D and 3D systems. We will not addressient that was not present in the incident field.
here the question of the convergence and accuracy of the These results emphasize that for a 2D system under arbi-
numerical solution of Eq(8) but rather refer the interested trary incident illumination, one cannot simply treat TE and
reader to Ref[15], where this is discussed in detail. Let us TM polarizations separately, but one must carefully take into
also mention that problems with about 80 000 meshes araccount the coupling between the different field components,
within the reach of a standard desktop computer using a coras described in Sec. Il C.

o = O

1
L=3| 0
0
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(111)

y [um]

y [um]

FIG. 5. Model of a cubic close-packed silica spheres domain.
The (111) face is illuminated at normal incidence and the field
scattered in directioms is computed.

3 2

[0 ) T 2 3 B. 3D example: color formation in opal
X [um .
FIG. 3. Field repartition in the microcavity of Fig. 2 when it is The flashlng co_lors proQgced bY opal hglve .al\_Nays beef‘ a
illuminated by as-polarized plane wave impinging at an angle subject offascilnatlon and itis only in the _m|d sixties that this
9,=35° propagating parallel to thg axis (Fig. 1); (a) total field colorful behaV|or. could be related to the internal structure of
intensity andb) intensity of theE, field component. This last com- opa!. Electron microscopy indeed revealed that this mlngrgl-
ponent that is not present in the incident wave is created by th@id iS formed by regular arrangements of close-packed silica
scattering process. [sggzr?(gas with a 80—-200 nm radius, in a water background
It is interesting to point out that the, field does not show An opal is composed of several small domains containing
any interference patterfFig. 3(b)]. This again comes from spheres of a similar radius that are close packed either in
the fact that no suck, component was present in the inci- cubic (fcc) or hexagonalhcp form. Each domain acts as a
dent field. 3D diffraction grating that scatters light in different direc-
The field repartition in the cylindrical fiber and in the tions depending on its wavelength. The interplay of these
cavity greatly depends on the angle of incidemcéFig. 1). different domains produces the colorful appearance of opal.
For particular incidences, a strong field can be excited in the
fiber (Fig. 4). This situation corresponds to the excitation of
a mode in the fibef31]. Such a mode can only exist for
particular values of the propagation vectqr, i.e., for par-
ticular angle of incidence§,; . In the case of Fig. 4, the mode
excited in the fiber reproduces the symmetry of the elliptical
cavity.

Scattered Intensity [arb. units]

y [um]

\ — fec
——- hep

—— 450 500 550 600 650 700
1 > 3 Wavelength [nm]

0
X [um]

FIG. 6. Scattered intensitffogarithmic scalgas a function of
FIG. 4. Same situation as in Fig(a but for an incident field at  the illuminating wavelength for different scattering directiofis
6,=50°. A mode in the cylindrical fiber is now excited in the scat- (Fig. 5. Two domains with different crystallographic structutes
tering process. and hcp are investigated.
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To illustrate the color formation in opal, let us investigatetion relative to the light source and observer.
the scattering properties of such a domain formed by 10 lay-
ers of close-packed silica sphefeadius 100 nmin a water IV. CONCLUSION
backgroundFig. 5). The (111) face of the domain is illumi- )
nated at normal incidence with a circular polarized plane AS illustrated by the examples of Sec. lll, the fully vec-
wave propagating against the face and the field scattered {Qrial formalism developed in this paper can be applied to a
particular directionsé; is computed as a function of the broad variety of physical problems where scatterers are em-
wavelength in the visible range @5..700 nm. Thefre- bedded in a polarizable background. This approach is quite
quency dependent permittivity for silica and the backgroundlex'ble so that it can handle complicated geometries both in

are taken from Ref$34] and[35], respectively. To compute 2D an.d 3.D systems. The iqvestiggtion of 2D configurations
only the scattered fiel@instead of the total fie)dat the ob- has highlighted extremely interesting effects related to the

servation pointr outside the scatterer, one merely setsCOUPling between the different field components. Finally,
E%(r)=0 in Eq. (6) for this observation point. this formalism can of course also be applied to scattering

We compare in Fig. 6 this scattered intensity for an fccSituations where the scatterers are simply in vacuug (

and an hcp domain. For low scattering anglesg., 6,
=10°), we see that the spectral behavior does not depend on

the crystal structure and both configurations mainly scatter
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