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Increasing the Performance of the Coupled-Dipole
Approximation: A Spectral Approach

Nicolas B. Piller,Student Member, IEEE, and Olivier J. F. Martin

Abstract—We show that it is possible to increase the perfor-
mance of the coupled-dipole approximation (CDA) for scattering
by using concepts from the sampling theory. In standard CDA,
the source in each discretized cell is represented by a point dipole
and the corresponding scattered field given by Green’s tensor. In
the present approach, the source has a certain spatial extension,
and the corresponding Green’s tensor must be redefined. We
derive these so-called filtered Green’s tensors for one-dimensional
(1-D), two-dimensional (2-D), and three-dimensional (3-D) sys-
tems, which forms the basis of our new scheme: the filtered
coupled-dipole technique (FCD).

By reducing the aliasing phenomena related to the discretiza-
tion of the scatterer, we obtain with FCD a more accurate
description of the original scatterer.

The convergence and accuracy of FCD is assessed for 1-D, 2-
D, and 3-D systems and compared to CDA results. In particular
we show that, for a given discretization grid, the scattering cross
section obtained with FCD is more accurate (to a factor of 100).
Furthermore, the computational effort required by FCD is similar
to that of CDA.

Index Terms—Computation theory, convergence of numerical
methods, diffraction, electromagnetic scattering, filtering, numer-
ical analysis, propagation, sampling methods, signal processing.

I. INTRODUCTION

T HE coupled-dipole approximation (CDA) was first ap-
plied by Purcell and Pennypacker in 1973 to study

the scattering by interstellar dust particles [1]. Later, the
unfulfillment of the optical theorem by Purcell and Penny-
packer’s algorithm was noticed by several authors [2], [3]. This
limitation was caused by the fact that in the series of dipole
that represented a macroscopic object the self-interaction of
each dipole was neglected. Nevertheless, Purcell and Penny-
packer’s algorithm was valid, but it required an extremely fine
discretization of the object; furthermore, the optical theorem
could not be used to compute the total scattering cross section.
Some solutions were proposed to overcome this problem [2],
[4]. In particular, Goedecke developed a pure macroscopical
CDA theory [3]. The CDA was also expanded to anisotropic
[5] and bianisotropic [6] materials.

The computation of the scattered field with CDA involves
the solution of a large system of equations. This system
of equations can be ill-conditioned when the scatterer is
large. Therefore, primitive algorithms like LU factorization,
which work only when the matrix is well conditioned, cannot
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be used for these problems. A more robust solver such as
Givens factorization is required. Unfortunately, such solvers
are generally more computation consuming.

An alternative has been described by Martinet al. [7]
to compute the solution iteratively. This technique enables
the rapid computation of a series of geometrically similar
problems, because the solution of a previous problem may
be reused as the starting point for another.

Recently, another method has been introduced to solve CDA
equation systems [8], [9]. Based on the conjugate gradient
algorithm [10] coupled with a fast Fourier transform (CGFFT),
this technique provides a huge reduction in memory and
computation requirements as they become proportional to,
respectively, , where is the number of volume
discretization cells. The only restriction of CGFFT is that the
discretization grid must be regular.

Later, the equivalence between CDA and the method of
moment (MoM) for dielectric scatterers was evidenced [11].
Like this the fast multipole method (FMM) that was orig-
inally developed for MoM can be used directly to reduce
the requirements when a regular discretization is not feasible
[12]. Because of the reduction of accuracy associated with
FMM [12], CGFFT should be chosen even when a regular
discretization is possible [13].

In this paper, we demonstrate that the performance of the
CDA can be improved by taking the sampling theory into
account. First, in Section II, we recall the basis equations
of CDA, as well as its traditional numerical implementation.
The sampling theory is summarized in Section III. Because
this theory needs some information on the spectrum1 of the
functions to sample, the corresponding vectorial functions for
electromagnetic fields are presented at the end of the section.
In Section IV, the results of the two preceding sections are
combined; the discretization of the volume integral equation is
obtained using the sampling theory, which forms the modified
CDA schemes presented in this paper. In Section V, numer-
ical simulations are used to compare the different numerical
schemes and study their convergence. Finally, our results are
summarized in Section VI.

II. THE COUPLED-DIPOLE APPROXIMATION

The aim of the CDA is to obtain the total vectorial electric
field scattered by a three-dimensional (3-D) body
illuminated by an incident field and embedded in a
homogeneous medium of permittivity and permeability

1The spectrum means the 1-D, 2-D, or 3-D Fourier transform of the spatial
functions.
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. The incident field has to fulfill the wave equation

(1)

where the harmonic time dependence e is assumed for
each field function and is the wavenumber in vacuum:

. The total field, which is the sum of the incident
field and the scattered field, fulfills the wave equation for the
inhomogeneous medium

(2)

where is defined as the dielectric contrast between the
scatterer and the surrounding medium

(3)

Let us note that vanishes outside the scatterer.

A. Solution of the Problem

Evaluating the total field solution of (2) comes down
to solving the volume integral equation

d (4)

where is the dyadic Green’s tensor of the reference
medium. The integration volume includes all the domains
where the function does not vanish, and is the exclu-
sion volume: an infinitesimal domain aroundto exclude the
integration on the singularity of the dyadic Green’s function
for . The source dyadic depends only on the shape
of the exclusion volume . Its value for usual shapes is
tabulated in [14].

The volume integral equation (4) is valid forboth inside
and outside the integration volume and represents the
central equation for CDA.

B. Traditional CDA

The volume of the scatterer is decomposed intocells.
In the traditional CDA, one assumes that each cell is small
enough so that the variations of the total field and of
the dielectric function are negligible within the cell.
Introducing and for the volume, respectively, the position
of the center of cell , one can then define

(5)

(6)

Using (5) and (6), the integral equation (4) is decomposed into
a sum of integrals over each cell. This gives for

d

(7)

where we have assumed that the variations of for
in the th cell can be neglected for .

The integral in (7) is difficult to evaluate because
varies extremely rapidly when becomes close to . For
convenience, let us represent this integral by and call it
the self–induction term. Different approximations for have
been given in the literature [2]–[4]. For example, Purcell and
Pennypacker neglect this term in their calculation (i.e.,

) [1]. This is only possible for very fine sampling and does
not allow the application of the optical theorem to evaluate
the total scattering cross section [3]. To overcome these
drawbacks, Draine proposed approximating each cell using a
sphere [or a circle for two-dimensional (2-D) calculations] of
similar volume [2]. The integral in (7) can then be performed
analytically [15]. An interesting comparison of the different
approximations for is made by Ku [16].

Introducing the self-induction term into (7) gives

(8)

Writing this last equation for each and for each
vector component gives a large system of algebraic equations
with equations and unknowns for 3-D vectorial
problems. The factorization of this system of equations gives

, the electric field inside the volume . To compute the
field outside , the integral equation (4) can be discretized
for any using again (5) and (6). This leads to

(9)

Therefore, the computation of the field at a pointoutside the
scatterer does not require the solution of a system of equations,
but can simply be obtained from the field inside the object.

Two different conditions have been implicitly introduced by
the previous approximations. First, the variation of the electric
field in a cell and the variation of the dyadic Green’s tensor
in a cell were neglected [except for the computation of,
where the variations of over a cell were taken into
account]. Second, the shape of each cell was approximated by
a sphere to compute , thereby forcing the cell sizes in all the
three directions to be more or less similar. In order to obtain
accurate enough results, these two conditions require that the
cell dimensions are much smaller than the wavelength, which
leads to a large system of equations and therefore increases
the memory and computation requirements.

Finally, let us note that the scattering by an object embedded
in a particular inhomogeneous medium (surface, multilayered
substrate) is easily computed with the CDA if the Green’s
tensor is known for this particular medium. In this case, only
the scatterer has to be modeled with dipoles, leading to a huge
reduction in computation time and memory requirements [17].
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III. T HE SAMPLING THEORY APPLIED

TO ELECTROMAGNETIC FIELDS

In the previous section, the CDA technique was presented.
In this paper, we propose improvement of this technique by
using the sampling theory to decompose the volume integral
equation (4). The sampling theory is based on the knowledge
of the different spectral domains of a given function; in
particular on the knowledge of the spectral domains that
contain either important or negligible information. Thus, the
spectrum lying in important domains must be taken into
account, while remaining area of the spectrum can be neglected
to approximate the function with a given precision.

In this section, we first recall the sampling theory in a
general way; then we study the spectrum of the electric field
function and the most accurate way to represent this function
by discrete samples.

A. Sampling and Reconstructing a Function

1) Sampling Theory for a 1-D Function:The continuous
function is represented by discrete values or samples.
Then, an estimation of the original function is obtained using
a reconstruction filter. As we will see, two kinds of distortions
are introduced by this sampling/reconstruction operation, but
it is possible to attenuate one of them by suppressing some
spectral components of the original function prior to sampling,
with a filter called antialiasing filter (AAF) [18], [19]. Let
us call the function obtained by filtering the original
function with the antialiasing filter . The spectrum

of is

(10)

where is the spectrum of the original function . The
function is then sampled with a regular sampling distance

. The sampled function can be represented with the
help of Dirac delta functions

(11)

where are the sample values . Let us emphasize
that the sampling operation (11) corresponds to the numerical
discretization procedure effectuated in a numerical scheme.

As the sampled function is fully determined by the contin-
uous function , its spectrum is fully determined
by [20]:

(12)

where the sum in (12) represents the spectral repetitions
produced by the sampling operation. Each spectral repetition is
equivalent to the spectrum of the continuous function, shifted
by a multiple of the sampling circular frequency .

For example, the spectrum of an original function is
given in Fig. 1(a1). First, we use no antialiasing filter, i.e.,

and . Sampling the function with
a sampling rate gives the spectrum in Fig. 1(a2). The

(a) (b)

Fig. 1. Spectra of the 1-D function during the sampling and reconstruction
operation: (a) without antialiasing filter and (b) with an ideal antialiasing filter.
1) Prior sampling; 2) sampled; and 3) after reconstruction.

superposition of the spectral repetitions with the spectrum of
the original function is visible [Fig. 1(a2)].

Reconstructing the function, i.e., approximating the original
function, reduces to extraction of the spectral domain where
the spectrum of the original function is more important than
the spectral repetitions. This operation is made with the
reconstruction filter . The spectrum of the reconstructed
function becomes

(13)

For the example of Fig. 1, a well-adapted reconstruction
filter is a low-pass with cutoff frequency equal to . The
spectrum of the signal reconstructed with this filter is given
in Fig. 1(a3).

Two kinds of distortions are introduced by the sampling
operation. First, when the original function has nonzero spec-
trum falling in the blocking region of the reconstruction filter,
this part of the spectrum is lost, producing linear distor-
tions. Comparing the original [Fig. 1(a1)] and reconstructed
[Fig. 1(a3)] function spectra, this distortion is noticeable for
circular frequencies , where the spectrum of the
original function is lost.

The second kind of distortion appears when nonzero spectral
repetitions lie in a nonblocking region of the reconstruction
filter. In this case, spectrum parts that do not exist in the
original function may appear in the reconstructed function,
producing nonlinear distortions, called aliasing. This is no-
ticeable in Fig. 1(a3) for , where the spectrum is
modified.

Nonlinear distortions can be suppressed by using a better
antialiasing filter. This antialiasing filter must remove the
spectral components of the continuous signal that produce
nonzero spectral repetitions in the pass-through domain of
the reconstruction filter. A low-pass filter with a circular
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cutoff frequency would be optimal. Using such an anti-
aliasing filter on the spectrum in Fig. 1(a1) gives the
spectrum in Fig. 1(b1). Sampling this function does
not produce spectrum overlapping [Fig. 1(b2)], and then the
reconstructed function spectrum is only spoiled by linear
distortions [Fig. 1(b3)]. The reconstructed spectrum is
exactly equal to . This is possible because in our example

fulfills the sampling theorem [21], [22].
The reconstructed function can be determined by

inverse Fourier transform of its spectrum , or by direct
convolution of the sampled function with the filter impulse re-
sponse . Using the properties of the Dirac delta function,
this leads to

(14)

where is evaluated by inverse Fourier transform of its
spectrum . In our example, the filter is a low-pass with
cutoff frequency ; its impulse response is

(15)

As the spectrum components with are lost by
the sampling/reconstruction operation, the sampling rate must
be large enough to preserve the important part or the spectrum.

2) Sampling 2-D and 3-D Field Functions:The sampling
theory is generally used for scalar functions. But in this
paper, the function to sample and reconstruct is a vectorial
field function and little literature exists for such a case.
Nevertheless, each Cartesian component of the field function
can be considered as a scalar function, which relates our
problem to the traditional sampling theory and in the remaining
of the paper we will use “spectrum” for the “spectrum of each
field component.”

The vectorial 2-D or 3-D function is sampled on a regular
grid, with step lengths in the direction, corresponding to
a sampling circular frequency for this direction
( for 2-D and for 3-D).

Again, the optimal anti-aliasing filter is a low-pass with
cutoff circular frequency in the spectral direction .
For example, the spectrum of an original 2-D function
is plotted in Fig. 2(a). After suppression of the high spectral
components by this optimal filter, the spectrum is plotted
in Fig. 2(b).

As in the 1-D case, the spectrum of the sampled function is
formed by the original spectrum plus the spectral repetitions
[Fig. 2(c)], the latter showing a shift in each direction
[23].

Using a low-pass reconstruction filter with cutoff circular
frequency in the spectral direction (i.e., a square
pass-through region) the reconstructed spectrum is perfectly
identical to [Fig. 2(b)].

As we will see in Section IV, the reconstructed function has
to be integrated after its multiplication with Green’s tensor.
While the impulse response is best expressed in Cartesian
coordinates, Green’s tensor is best expressed in circular (2-
D) or spherical (3-D) coordinates. The integration would be
easier if these two product elements had the same coordinate

(a) (b)

(c) (d)

Fig. 2. Influence of the reconstruction filter on the spectra of a 2-D function:
(a) original function, (b) filtered with anti-aliasing filter, (c) filtered and
sampled, and (d) reconstructed with a circular reconstruction filter. If an ideal
reconstruction filter were used, the reconstructed spectrum would coincide
with spectrum (b).

system. A work-around consists in restricting the pass-through
domain of the reconstruction filter to a circle (or a sphere
for 3-D) included in the pass-through region of the square
reconstruction filter. The spectrum of the signal reconstructed
with such a filter is plotted in Fig. 2(d). Some of the spectrum
information contained in the edges of the square is lost, as
can be noticed in Fig. 2(d). We have verified with numeri-
cal simulations that the influence of these additional linear
distortions on the solution of our algorithm is negligible.
Therefore, it is possible to take advantage of this reduction
of the pass-through domain to make the integration of the
product of the impulse response with Green’s tensor easier.
The spectral domain is then lost by this
sampling/reconstruction operation. Therefore, the sampling
rate for each direction must be chosen large enough
to preserve the important part of the spectrum.

Defining as the position of theth sample, the corre-
sponding sample value becomes

(16)

As in the 1-D case (14), the reconstructed function is
obtained by filtering the sampled signal with the reconstruction
filter , and is used to approximate the original function

(17)

where is the volume of the cell, equal to for the 2-D
case and to for the 3-D case.
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B. Spectrum of the Electric Field Function

Our objective is to use the sampling theory to obtain an
approximation for the integrand of (4). Therefore, we will first
study the spectrum of the product . Actually we
first study the spectra of and separately and then
deduce information on the spectrum of their product. Then we
will propose a way to suppress the high spectral components
of this product, in order to reduce aliasing by the sampling
operation.

We consider a piecewise homogeneous scatterer that can be
decomposed into a finite number of closed homogeneous
regions . Each region has a wave number and a
dielectric function equal to . Assuming that
vanishes outside , the function product can be
rewritten as a sum

(18)

where and are equal to , respectively, ,
inside . Outside , as vanishes, can take
arbitrary values.

Inside the region , we use the fact that the field
can always be approximated by the series expansion

(19)

For a 1-D problem, the field can be exactly represented in
a homogeneous region with a sum of only two functions,
representing plane waves propagating in the positive and
negative directions [24]. For the 2-D and 3-D cases, the field
can only be approximated, but with an arbitrary precision,
with a finite number of expansion functions. An appropriate
approximation basis is the regular basis also called
Bessel multipoles. (See [25, Sec. C.2], [26] for 2-D and [25,
Sec. C.3], [27] for 3-D.) This defines a “complete” basis
and can therefore also represent evanescent waves on a finite
domain.

Let us define as the spectral domain where the spectrum
of the field functions does not vanish. For the above-
mentioned function , is only formed by the two
discrete points for 1-D, by a circle of radius for
2-D,2 and by a sphere of radius for 3-D. Because of the
linearity of the Fourier transform, the spectrum of any linear
combination of these functions, and therefore also the spectrum
of the field approximation (19) is nonzero only in .

The spectrum of the dielectric function in the domain
can be evaluated by Fourier transform. Therefore, we can use
some properties of the Fourier transform to obtain information
on the spectrum of . First, because is constant
on , the maximum value of this spectrum is at the point

. Second, because does not vanish in a closed
domain, the spectral domain where the spectrum does not
vanish is not closed. Third, the uncertainty principle bounds

2To simplify the notation, we assume no propagation inẑ direction. In a
general case, the circle radius is equal to the transversal wave number in the
concerned domain�d .

the relation between the domain size and the spectral
domain size containing information: when the domain is
small, the spectral information is more spread than when
is large. Finally, the spectrum of is more spread when
the boundary of is complicated, because higher frequency
spectral components are needed to represent this boundary
accurately.

Consequently, the spectrum of each Cartesian component
of the product being the convolution of their
spectra, the following deductions can be done. First, the
spectral domain on and at the vicinity of contains important
information. Second, when is small or has a complicated
boundary, a larger neighborhood of contains important
information in the spectral domain.

Because of the linearity of the Fourier transform, the spec-
trum of the function for the complete scatterer is
equal to the sum of the spectra associated with
the different homogeneous regions. Therefore, the spectral
domain containing important information for the total function
must include all the domains containing important information
for each function .

Taking into account the results of Section III-A2, we see that
the sampling rate has to be larger than . This means
that we must sample with at least two points per wavelength;
otherwise a part of will be lost, leading to an extremely
bad approximation of the field. This minimal sampling rate
must be raised when the different domains are small or have
complex boundaries. Furthermore, it is obvious that increasing
the sampling rate produces a better approximation: a larger part
of the spectrum being then taken into account.

As a 2-D spectrum example, let us consider the field
scattered by an homogeneous infinite cylinder. We assume that
the electric field is limited to the first expansion function

. The corresponding spectrum is reported in
Fig. 3(a1). The domain where the spectrum does not vanish, a
circle of radius , is clearly visible. The spectrum of the
associated dielectric function , which is a cylinder
of small radius, is represented in Fig. 3(a2). The spectrum
of the product has its maxima on and near

[Fig. 3(a3)]. As the spectrum of the dielectric function
[Fig. 3(a2)], the spectrum of this product decreases at high
frequencies, but never vanishes [Fig. 3(a3)].

As we have seen in Section III-A2, the high spectral compo-
nents of the function to sample must be suppressed to eliminate
aliasing. Because the electric field isa priori unknown, it
is not possible to directly filter the product .
It is nevertheless possible to suppress its high spectrum
components by filtering only . Using a low-pass filter
with a cutoff circular frequency in the direction, the
resulting function, which we define as , has its spec-
trum represented in Fig. 3(b2). The spectrum of the product

is given in Fig. 3(b3). This spectrum being the
convolution of the spectrum of [Fig. 3(b1)] and the
spectrum of [Fig. 3(b2)], it vanishes for

. To suppress any aliasing, the cutoff circular frequency
must satisfy

(20)
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(a) (b)

Fig. 3. Limitation of the spectral domain of�~�(r)E(r) using a filter on
��(r): (a) without low pass and (b) with low pass. 1) Spectrum ofE(r). 2)
Spectrum of�~�(r); 3) Spectrum of�~�(r)E(r).

The boundary (20) seems nevertheless too restrictive, because
such a low-pass characteristic suppresses all the nonlinear
distortions but produces a lot of linear distortions. Increasing

introduces aliasing but reduces the linear distortions. Using
numerical simulations, we obtained an optimum for

(21)

The use of an ideal low-pass filter to obtain is impos-
sible, because such a filter has an infinite impulse response
(IIR), making the nonvanishing domain of infinite and
the domain to sample infinite as well. Therefore, we must use
a finite impulse response filter (FIR). We choose to use the
windowing technique [28, Ch. 3.8] with an Hanning window
(Hanning-FIR) [28, Ch. 3.10] of size .

Analytically filtering a dielectric function with such a con-
tinuous filter is generally impossible. To evaluate , the
filter must be discretized, i.e., the impulse response and the
dielectric constant are sampled and then convoluted. The
sampling distance used for this operation is .

Defining , and using (17), we
obtain an approximation for the original function:

(22)

Finding an optimal filter for the dielectric function is
difficult and the proposed FIR filter is only one possible
choice from many. Another choice is a mean-filter, where

becomes equal to the mean value of over mesh
. This last filter is easy to implement and gives relatively

good results, as will be seen in Section V. Nevertheless, an
optimization study for determining the optimal filter remains
to be made.

IV. COUPLED-DIPOLE APPROXIMATION

BASED ON SAMPLING THEORY

In Sections II and III-A, the electromagnetic integral equa-
tion and the signal reconstruction were presented. Now, the
results of these two theories are combined to formulate a new
CDA scheme.

The approximation (22) of the continuous function product
is introduced in (4):

d (23)

Interchanging the integration/summation order, (23) becomes

(24)

where the tensor is

d (25)

The integral in (25) is a convolution, which means that
is equal to the Green’s tensor filtered

by the reconstruction filter . This filtered Green’s tensor
is developed for 1-D, 2-D, and 3-D in Appendix A. It is
interesting to note that it does not have a singularity for
as was the case for the nonfiltered Green’s tensor. Equation
(24) is valid for inside and outside the scatterer domain. We
rewrite this relation for to obtain a system of linear
equations:

(26)

This system of equations is quite similar to (18). The self-
induction term is now expressed by and
the Green’s tensor is replaced by the filtered Green’s tensor.
Therefore, we name this new scheme filtered coupled-dipole
(FCD). The numerical solution of the problem is obtained in a
similar way as before: first the system of (26) must be solved to
obtain the field on the sampling points. Then the field outside
the scatterer can be computed with (24). In addition, the field
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inside the scatterer but at different positions than the sampling
points can also be computed with (24).

As for CDA, the analogy between FCD and MoM for
dielectric scatterers can be remarked [11]. Indeed, writing FCD
in the MoM formulation gives the reconstruction functions

as basis functions and the Dirac delta functions
as test functions. MoM generally uses quite different

basis and test functions, like for example rooftop functions
[29]. FCD has the advantage of being able to exactly represent
the function up to the circular frequency and
also includes the anti-aliasing filtering technique.

V. RESULTS

We present in this section 1-D, 2-D, and 3-D calculations.
To assess the accuracy of our numerical results, we chose
examples where an analytical or an asymptotic solution exists.

The accuracy of CDA results depends on a large number of
parameters, in particular on the cell size, the shape, the size and
the dielectric constant of the scatterer. Therefore, we restrict
this study to glass scatterers embedded in vacuum

. For each problem a constant geometry is set and we
investigate the error as a function of the cell size. More
precisely, we report in the figures , the number of cells
per effective wavelength in the dielectric . The wavelength
in the surrounding medium (vacuum) is .

A. 1-D Calculations

A 1-D dielectric barrier is embedded in vacuum. The
incident wave is a plane wave with propagation direction
normal to the barrier. The electric field is parallel to the
barrier interfaces. This problem can be solved analytically,
thereby providing a perfect reference solution to assess
the accuracy of our procedure [24].

For the numerical results, the barrier is sampled with
samples. We then solve either the associated system of (8) for
the Purcell and Pennypacker (PP) solution ( ) or for the
traditional coupled-dipole (CDA) solution (nonvanishing )
or the system of (26) using the 1-D filtered Green’s tensor
derived in Appendix A1 for the filtered coupled-dipole (FCD)
scheme presented is this paper.

For each of these three methods, the following error function
is defined:

(27)

This relative error is represented in Fig. 4 for a barrier length
equal to and and a sampling rate between
2 and 30. The number of samples goes then, respectively,
from 3 to 45 points and from 12 to 180 points for the small
and large barrier, respectively.

A larger gain in precision between FCD and CDA than
between CDA and PP is visible in Fig. 4. This gain is also
more important when the barrier is large. This is due the fact
that an error is induced throughout the entire barrier length for

(a)

(b)

Fig. 4. Error 	1�D for a barrier in vacuum with length�ref (a), re-
spectively,4�ref (b), using the Purcell and Pennypacker scheme (PP), the
traditional coupled-dipole approximation (CDA) or the algorithm presented in
this paper (FCD). The dielectric barrier has a dielectric constant�d = 2:25.

both PP and CDA schemes, while for FCD an error is only
introduced where the function has high spectral components,
i.e., at the edges of the barrier, where the dielectric function
has a step. In the homogeneous regions, the function can be
almost exactly approximated with FCD.

Using PP and CDA it is not possible to calculate an
approximation of the field with a large cell size, and the
corresponding solutions diverge for less than 3.5, respectively,
four samples per wavelength for the small, respectively large
barrier. On the other hand, FCD gives a satisfactory field
approximation even with a sampling rate close to two points
per wavelength (Fig. 4).

B. 2-D Calculations

A homogeneous dielectric cylinder of radius is illumi-
nated by a plane wave with a propagation direction perpen-
dicular to the cylinder axis. Two cases can be considered:
the electric field of the incident wave parallel to the cylinder
axis (TM field) or perpendicular to the axis (TE field). The
corresponding Green’s tensor and filtered Green’s tensor are
derived in Appendix A2. The calculation of the latter requires
a numerical integration which fortunately converges rapidly.
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(a)

(b)

Fig. 5. Error representation	2�D as a function of the number of cells per
effective wavelength�=�d, using the traditional CDA and the algorithm
presented in this paper (FCD). The scatterer is a cylinder of radiusR = �0
in vacuum with dielectric constant�d = 2:25 illuminated, respectively, by
(a) a TM field and (b) a TE field. The dielectric function is either directly
discretized (without AAF), filtered with a mean-filter (MF) or with a FIR
low-pass filter (LP) prior sampling.

As reference solution, we use the asymptotic solution
(farfield) scattered in -direction [30, Ch. 8]. We
then define as error function

d

d

(28)

where is the numerically computed farfield.
The error function is reported in Fig. 5(a) for the TM

case, both for CDA and FCD and for different anti-aliasing
filters.

First of all, the curves obtained for CDA without filtering
the dielectric function [Fig. 5(a), dashed line with crosses]
zigzag substantially. This zigzag effect, which is caused by
the more or less good representation of the scatterer geometry
by the discretized dipoles, was also observed by Draine [2]. It
is strongly attenuated by filtering the dielectric function prior
sampling [Fig. 5(a), other dashed lines]. These zigzags cause
a large uncertainty on the result accuracy.

The accuracy difference between CDA simulations effectu-
ated either with the mean-filter or with the low-pass filter is
small. Therefore the mean-filter, which is easier to implement,
seems fully appropriated for CDA.

On the other hand, a large accuracy difference (up to a factor
100) is visible between the simulations effectuated with CDA
and FCD [Fig. 5(a), dashed and continuous lines]. Further-
more, for the FCD case, filtering with the most sophisticated
anti-aliasing filter leads to an accuracy improvement of factor
10, as observed between low-pass (Hanning-FIR) and mean
anti-aliasing filters.

FCD simulations effectuated with a low-pass anti-aliasing
filter show a rapid convergence for small sampling rate (

), but the convergence decreases for larger sampling rates
( ). For such a large sampling rate, FIR anti-aliasing
filter seems to have a large influence on the solution accuracy.
An optimization of this filter would probably give the possi-
bility to obtain better results, in particular the optimization of
the minimization between the linear and nonlinear distortions,
and the approximation of the linear filter by a digital one.

Similar behavior is observed for TE polarization [Fig. 5(b)].
In this case, the accuracy improvement is smaller but never-
theless reaches a factor 12.

Finally the numerical integrations required for the evalu-
ation of the 2-D Filtered Green’s tensor increases the com-
putation for FCD. However, this difference represents only a
marginal part of the entire computation.

C. 3-D Calculations

A spherical scatterer of radiusand dielectric constant is
illuminated by a plane wave. The farfield, computed as in [30,
Ch. 4], is used again to assess the precision of the numerical
results. Defining and , respectively, as
the numerical and the asymptotic farfields radiated in direction
( ), the error function becomes

d d

d d

(29)

This relative error is represented in Fig. 6 as a function
of the sampling rate for radii [Fig. 6(a)] and

[Fig. 6(b)]. The finest discretization of the larger
sphere represents more than 200 000 dipoles.

The same considerations as for the 2-D case can be made on
the filtering of the dielectric function and on the advantages
provided by FCD. The better performances of FCD can be
used in two ways: it is possible with FCD to obtain more
precision at the same numerical expenses as CDA, or to obtain
the same accuracy as CDA for less computation. For example
for the sphere with relative error of 10 requires a
sampling rate of 3.77, respectively, 6.34 cells perfor FCD,
respectively, CDA. Such a sampling rate represents 3456 cells
for CDA and only 1024 for FCD. On the other hand, with a
sampling rate of 6.34 the accuracy is increased by a factor of
three between CDA and FCD.
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(a)

(b)

Fig. 6. Error representation	3�D as a function of the number of cells per
effective wavelength�=�d, using the traditional CDA and the algorithm
presented in this paper (FCD). The scatterer is a sphere in vacuum with
dielectric constant�d = 2:25 illuminated by a plane wave. Two sphere radii
are investigated: (a)R = 0:5�0 and (b)R = �0. The dielectric function is
directly discretized (without AAF), filtered with a mean-filter (MF) or with a
FIR low-pass filter (LP) prior sampling.

Because the filtered Green’s tensor is known analytically
for 3-D (Appendix A3) and therefore no numerical integration
is necessary for its calculation, the time required to evaluate
the Green’s tensors merely differs between CDA and FCD.
Furthermore, it is totally negligible compared to the total
computation time.

We have also tested these different schemes thoroughly with
other dielectric constants . While a small provides
very good convergence and accuracy, a finer discretization is
required for larger dielectric constants or for absorbing media.
The accuracy improvements provided by FCD and AAF where
approximately identical for each case.

The solution of the system of equations was obtained with
a conjugate gradient code (CG) made available to the public
domain by Flatauet al. [31]. The matrix products required by
CG were computed by FFT using the NAG library [32]. The
symmetry of the problem was taken into account to reduce the
size of the system of equations. The condition of the associated
matrix is not sensibly influenced by the filtering of Green’s
tensor, the number of iterations of the CG being then quite
similar for CDA and FCD.

VI. CONCLUSIONS

A new numerical scheme, the filtered coupled-dipole (FCD),
based on the sampling theory, has been developed for 1-D,
2-D, and 3-D.

FCD increases the performance of the coupled-dipole ap-
proximation (CDA): with this new scheme it is possible to
obtain with a given discretization grid a better accuracy than
with CDA; or to achieve the same accuracy with a larger cell
size. The additional computation time is negligible for 1-D
and 3-D systems; for 2-D systems it is below 10% of the total
computation time.

This new scheme is particularly well-suited for large scatter-
ers with homogeneous subdomains. Furthermore, while CDA
results diverge for low discretization rates, FCD continues to
provide reasonable results with a discretization rate close to 2
points per effective wavelength.

Filtering of the dielectric function prior to sampling
has been shown to have a strong influence on the accuracy
of the results. In particular, the use of a mean-filter [which
corresponds to averaging over each cell] also improves
the results of standard CDA. More sophisticated filters were
investigated and, the best results were obtained with a low-
pass filter. A detailed study of the influence of the filter
characteristic on the accuracy of the method remains to be
done.

APPENDIX

A. Derivation of the Filtered Free-Space Green’s Tensor

In this section, the filtered Green’s Tensor for
free space is derived. We first explain the transformation of
(25) into a convolution, which makes its computation in the
spectral domain possible. Then this scheme is used to derivate
1-D, 2-D, and 3-D filtered Green’s tensors.

For free space, the Green’s dyadic is only a
function of the relative position of and [33, Sec. 4.2].
Therefore, it is possible to rewrite this dyadic as a function of
the relative position only:

(30)

Equation (30) defines the single argument Green’s tensor
. With this notation, (25) becomes, after replacing

the integration variable by ,

d

(31)

where the integration volume represents the initial
integration volume shifted by the change of integration vari-
able. We define a new tensor that is identical to
except in the exclusion domain, where it vanishes:

if
elsewhere.

(32)

In Section II, it was mentioned that vanishes outside
; as enters in , it is possible to expand the
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integration volume to the infinite domain , where
is the number of dimensions of the problem. Extending the
integration domain to and replacing the Green’s tensor of
(31) with leads to

d

(33)

Equation (33) is the convolution of with at the
point . A convenient way to evaluate a convolution
is to use the spectral domain, where the spectrum of the
convolution of two functions becomes the product of their
spectra. We define as the spectrum of and
as the spectrum of . Using the inverse Fourier transform
of the product of these two spectra, the filtered Green’s tensor
becomes

e d (34)

If the reconstruction filter has a pass–through domain
where its spectrum is equal to 1 and a blocking domain

where its spectrum vanishes, the integration domain in
(34) can be restricted to :

e d (35)

In our case, the pass-through domain of the filter is a
closed domain. The nonvanishing spectral part of the filtered
Green’s tensor is also included in a closed domain. Functions
having such a spectrum do not have any singularity. Therefore,
contrary to the Green’s tensor , the filtered Green’s
tensor does not have a singularity for .

The filtered Green’s tensor can also be evaluated as the
difference between the Green’s tensor and the Green’s tensor
filtered by the complementary filter (a high-pass with pass-
through domain ). For , this leads to

e d

(36)

Both terms of the right side of (36) have a singularity for
. These two singularities compensate each other to give

the regular function (35) without any singularity. It is therefore
possible to evaluate the filtered Green’s tensor for with
a limit calculation on (36).

1) 1-D Green’s Tensor:For the propagation direction par-
allel to the axis, the free-space 1-D dyadic Green’s tensor
is

e (37)

where is the wavenumber of the reference

medium and the transversal unit dyadic defined as
. Evaluating the Fourier transform of the single

argument Green’s dyadic gives

(38)

The spectrum has two poles for . These poles
falling in the pass-through domain of the filter (a low-pass with
circular frequency ), the filtered Green’s tensor is
derived using (36). This gives for

(39)

where

Ci (40)

Si (41)

and . The limit calculation must then be
used to evaluate the Green’s dyadic on its pseudo-singularity

.
2) 2-D Green’s Tensor:Assuming that the 2-D problem

has a translation symmetry along thedirection and that the
field propagates only in the plane (i.e., that there is no
coupling between TM and TE fields), the associated Green’s
tensor is

(42)

where , , and are functions of . Defining and
as argument, respectively, length of the vector , these
parameters are

H (43)

H (44)

H (45)

We evaluate the Fourier transform of each parameter, ,
and , excluding a circular volume from the integral.
Taking advantage of the radial dependence of the parameters,
their Fourier transform can be performed using the Hankel
transform [33, Sec. 1.4]. This gives

(46)

(47)

(48)

where represents the Fourier transform and, in an analog
notation as (32), the prime has been affixed to, , and

because the Fourier transform is evaluated by integration
on the entire domain except the exclusion volume. The
argument and length of the vectorare , respectively, .

The spectra (46)–(48) can be expressed with the function
product , where is one of the functions
or , and the remaining part of the function, which
is only dependent on. As the function has poles lying
near the pass-through domain of the filter, (36) is again
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Fig. 7. Integration path for the numerical integration of the 2-D filtered
Green’s function.

the most appropriate to compute the filtered parameters. The
pass-through domain of the filter being a circle of radius,
the filtered parameters gives for , after integration of
the azimuthal component

J d (49)

where is one of the , , or parameters. Again, for ,
the limit must be evaluated.

The evaluation of the filtered coefficients requires a numer-
ical integration from to infinity. The function to integrate
contains a Bessel function, which means an oscillating slow
convergence. To improve the convergence, we decompose
the integral into two by expanding the Bessel function into
a sum of Hankel functions of the first and second kinds
J H H and choosing an appro-
priate integration path in the complex plane for each of these
two integrals (Fig. 7). Indeed, because the two integrand are
analytic and have no singular points for real values greater
or equal to , the modification of the integration paths from

to or from to does not change the
result of the integral. Giving the integration path
and , respectively, for the integral with the first and
second Hankel functions, respectively, and making the radius

go to infinity, the integration path corresponds exactly
to the integration path of (49) and the integrand vanishes on

and . The two remaining integrals converge very rapidly
because the Hankel function with a complex argument does
not oscillate and decreases extremely rapidly.

3) 3-D Green’s Tensor:The 3-D free space Green’s Tensor
can be expressed, for , by the differentiation

of the scalar Green’s function

(50)

where the scalar Green’s function is

(51)

with . Introducing the Green’s tensor definition
(50) into the integral of the filtered Green’s tensor (33) gives
after interchange of the integration/differentiation order

d

(52)

where a spherical shape of the exclusion volume has been
assumed. We notice the apparition outside the integral of a
term that only depends on the impulse response .
This term, which is similar to the term in (4) for a spherical
exclusion volume, is caused by the differentiation/integration
order exchange [34, eq. (4.14)].

The integration in (52) being a convolution, its result
represents the filtered scalar Green’s function, which we define
by . As for the 1-D and 2-D cases, the spectrum
is used to filter this function. The Fourier transform of the
Green’s function is evaluated using the Hankel transform [35,
p. 254]:

(53)

where the exclusion volume has a spherical shape to
comply with the shape assumed for the derivation/integration
interchange in (52).

According to (36), the filtered Green’s function can be
determined by subtracting from the Green’s function the
Green’s function filtered with the complementary filter. In our
case, the Green’s function filtered with a low-pass filter with a
spherical pass-through domain of radius can be evaluated
by inverse Hankel transform. This gives for

(54)

where the functions and are defined in (40) and
(41). Introducing the filtered Green’s function into the filtered
Green’s tensor (52) leads to

(55)

Because is known analytically, the application of the
operator to the filtered Green’s function
can be determined without difficulties. Only the filter impulse
response in (55) must still be determined. The function
being equal to one in a sphere of radiusand zero elsewhere,
its inverse Fourier transform gives

(56)
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The filtered Green’s function is now fully deter-
mined for . A similar limit calculation as in the 1-D
and 2-D cases must be effectuated for ,

(57)
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