18 research outputs found

    Fpga-based reliable fault secure design for protection against single and multiple soft errors

    No full text
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Field programmable gate arrays (FPGAs) are increasingly used in industry (e.g., biomedical, space, and automotive industries). FPGAs are subjected to single, as well as multiple event upsets (SEUs and MEUs), due to the continuous shrinking of transistor dimensions. These upsets inevitably decrease system lifetime. Fault-tolerant techniques are often used to mitigate these problems. In this research, penta and hexa modular redundancy, as well as dynamic partial reconfiguration (DPR), are used to increase system reliability. We show, depending on the relative rates of the SEUs and MEUs, that penta modular redundancy has a higher reliability than hexa modular redundancy, which is a counter-intuitive result in some cases since increasing redundancy is expected to increase reliability. Focusing on penta modular redundancy, an error detection and recovery mechanism (voter) is designed. This mechanism uses the internal configuration access port (ICAP) and its associated controller, as well as DPR to mitigate SEUs and MEUs. Then, it is implemented on Xilinx Vivado tools targeting the Kintex7 7k410tfbg676 device. Finally, we show how to render this design fault secure in the event that SEUs or MEUs affect the voter itself. This fault secure voter either produces the correct output or gives an indication that the output is incorrect

    Phenotypical heterogeneity in RAG-deficient patients from a highly consanguineous population

    Full text link
    Mutations affecting recombination activation genes RAG1 and RAG2 are associated with variable phenotypes, depending on the residual recombinase activity. The aim of this study is to describe a variety of clinical phenotypes in RAG-deficient patients from the highly consanguineous Egyptian population. Thirty-one patients with RAG mutations (from 28 families) were included from 2013 to 2017. On the basis of clinical, immunological and genetic data, patients were subdivided into three groups; classical T B severe combined immunodeficiency (SCID), Omenn syndrome (OS) and atypical SCID. Nineteen patients presented with typical T B SCID; among these, five patients carried a homozygous RAG2 mutation G35V and five others carried two homozygous RAG2 mutations (T215I and R229Q) that were detected together. Four novel mutations were reported in the T B SCID group; three in RAG1 (A565P, N591Pfs*14 and K621E) and one in RAG2 (F29S). Seven patients presented with OS and a novel RAG2 mutation (C419W) was documented in one patient. The atypical SCID group comprised five patients. Two had normal B cell counts; one had a previously undescribed RAG2 mutation (V327D). The other three patients presented with autoimmune cytopaenias and features of combined immunodeficiency and were diagnosed at a relatively late age and with a substantial diagnostic delay; one patient had a novel RAG1 mutation (C335R). PID disorders are frequent among Egyptian children because of the high consanguinity. RAG mutations stand behind several variable phenotypes, including classical SCID, OS, atypical SCID with autoimmunity and T B CID
    corecore