2,572 research outputs found

    Fe K emission and absorption features in XMM-Newton spectra of Mkn 766 - evidence for reprocessing in flare ejecta

    Full text link
    We report on the analysis of a long XMM-Newton EPIC observation in 2001 May of the Narrow Line Seyfert 1 galaxy Mkn 766. The 3-11 keV spectrum exhibits a moderately steep power law continuum, with a broad emission line at ~6.7 keV, probably blended with a narrow line at ~6.4 keV, and a broad absorption trough above ~8.7 keV. We identify both broad spectral features with reprocessing in He-like Fe. An earlier XMM-Newton observation of Mkn 766 in 2000 May, when the source was a factor ~2 fainter, shows a similar broad emission line, but with a slightly flatter power law and absorption at a lower energy. In neither observation do we find a requirement for the previously reported broad 'red wing' to the line and hence of reflection from the innermost accretion disc. More detailed examination of the longer XMM-Newton observation reveals evidence for rapid spectral variability in the Fe K band, apparently linked with the occurrence of X-ray 'flares'. A reduction in the emission line strength and increased high energy absorption during the X-ray flaring suggests that these transient effects are due to highly ionised ejecta associated with the flares. Simple scaling from the flare avalanche model proposed for the luminous QSO PDS 456 (Reeves etal. 2002) confirms the feasibility of coherent flaring being the cause of the strong peaks seen in the X-ray light curve of \mkn.Comment: 9 pages, 11 figures, submitted to MNRA

    Numerical simulations of X-ray binary pulse profiles

    Get PDF
    We investigate the physical features of the accretion process in magnetic X-ray binaries. The characteristics of the accretion column and the geometrical modulation effects due to the neutron star spin determine the shape of the pulse profile. In order to constrain the possible scenarios, we produce numerical simulations of the X-ray pulse profile, in different energy bands. As an example we reproduce the pulse profile and hardness ratio curve of X Persei. Fan emission from a hollow section of cone, along with a non-thermal component can reproduce the observed data of this source

    Stream-field interactions in the magnetic accretor AO Piscium

    Full text link
    UV spectra of the magnetic accretor AO Psc show absorption features for half the binary orbit. The absorption is unlike the wind-formed features often seen in similar stars. Instead, we attribute it to a fraction of the stream that overflows the impact with the accretion disk. Rapid velocity variations can be explained by changes in the trajectory of the stream depending on the orientation of the white-dwarf's magnetic field. Hence we are directly observing the interaction of an accretion stream with a rotating field. We compare this behavior to that seen in other intermediate polars and in SW Sex stars.Comment: Accepted for ApJ; 6 page

    On a Site of X-ray Emission in AE Aquarii

    Full text link
    An analysis of recently reported results of XMM-Newton observations of AE Aqr within a hypothesis that the detected X-ray source is located inside the Roche lobe of the white dwarf is presented. I show this hypothesis to be inconsistent with the currently adopted model of mass-transfer in the system. Possible solutions of this problem are briefly discussed.Comment: 4 pages, accepted for publication in ApJ Letter

    Aeroelastic control and estimation with a minimal nonlinear modal description

    Get PDF
    Modal-based, nonlinear Moving Horizon Estimation (MHE) and Model Predictive Control(MPC) strategies for very flexible aeroelastic systems are presented. They are underpinned by an aeroelastic model built from a 1D intrinsic (based on strains and velocities) description of geometrically-nonlinear beams and an unsteady Vortex Lattice aerodynamic model. Construction of a nonlinear, modal-based, reduced order model of the aeroelastic system, employing a state-space realisation of the linearised aerodynamics around an arbitrary reference point, allows us to capture the main nonlinear geometrical couplings at a very low computational cost. Embedding this model in both MHE and MPC strategies, which solve the system continuous-time adjoints efficiently to compute sensitivities, lays the foundations for real-time estimation and control of highly flexible aeroelastic systems. Finally, the performance and versatility of the framework operating in the nonlinear regime is demonstrated on two very flexible wing models, with notably different dynamics, and on two different control setups: a gust-load alleviation problem on a very high aspect ratio wing with slower dynamics, which involves substantial deflections; and flutter suppression on a flexible wing with significantly faster dynamics, where an unconventional nonlinear stabilisation mechanism is unveiled

    Frequency spectrum of gravitational radiation from global hydromagnetic oscillations of a magnetically confined mountain on an accreting neutron star

    Full text link
    Recent time-dependent, ideal-magnetohydrodynamic (ideal-MHD) simulations of polar magnetic burial in accreting neutron stars have demonstrated that stable, magnetically confined mountains form at the magnetic poles, emitting gravitational waves at f∗f_{*} (stellar spin frequency) and 2f∗2 f_{*}. Global MHD oscillations of the mountain, whether natural or stochastically driven, act to modulate the gravitational wave signal, creating broad sidebands (full-width half-maximum ∌0.2f∗\sim 0.2f_*) in the frequency spectrum around f∗f_{*} and 2f∗2 f_{*}. The oscillations can enhance the signal-to-noise ratio achieved by a long-baseline interferometer with coherent matched filtering by up to 15 per cent, depending on where f∗f_* lies relative to the noise curve minimum. Coherent, multi-detector searches for continuous waves from nonaxisymmetric pulsars should be tailored accordingly.Comment: 4 figures, accepted for publication in Ap

    Binary evolution with LOFT

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of very faint X-ray binaries, orbital period distribution of black hole X-ray binaries and neutron star spin up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    A Flare of AE Aquarii Observed with XMM-Newton

    Full text link
    We present the results of analyzing the XMM-Newton data obtained in 2001 November 7 - 8. A flare is observed simultaneously in X-ray and UV together with a quiescence. We find that during the flare event X-ray flux varies with UV with no significant time lag, indicating a close correlation of flux variation for X-ray and UV flares. An upper limit of the lag is estimated to be \~1 min. From a timing analysis for X-ray data, we find that both pulsed and unpulsed flux increase clearly as the flare advances in the entire energy band 0.15 - 10 keV. The net increase of pulsed flux to the quiescence is, however, small and corresponds to about 3 - 4% of the increase in unpulsed flux, confirming that a flux variation of flare in AE Aqr is dominated by unpulsed X-rays. A spectral analysis reveals that the energy spectrum is similar to that of the quiescence at the beginning of the flare, but the spectrum becomes harder as the flare advances. Based on these results, we discuss the current issues that need to be clarified, e.g., the possible flaring site and the mass accretion problem of the white dwarf. We also discuss the flare properties obtained in this study.Comment: 15 pages, 3 tables, 9 figures, accepted for publication in Ap

    A new instability of accretion disks around compact magnetic stars

    Full text link
    Aperiodic variability and Quasi Periodic Oscillations (QPOs) are observed from accretion disks orbiting white dwarfs, neutron stars, and black holes, suggesting that the flow is universally broken up into discrete blobs. We consider the interaction of these blobs with the magnetic field of a compact, accreting star, where diamagnetic blobs suffer a drag. We show that when the magnetic moment is not aligned with the spin axis, the resulting force is pulsed, and this can lead to resonance with the oscillation of the blobs around the equatorial plane; a resonance condition where energy is effectively pumped into non--equatorial motions is then derived. We show that the same resonance condition applies for the quadrupolar component of the magnetic field. We discuss the conditions of applicability of this result, showing that they are quite wide. We also show that realistic complications, such as chaotic magnetic fields, buoyancy, radiation pressure, evaporation, Kelvin--Helmholtz instability, and shear stresses due to differential rotation do not affect our results. In accreting neutron stars with millisecond periods, we show that this instability leads to Lense-Thirring precession of the blobs, and that damping by viscosity can be neglected.Comment: Accepted for publication in the Astrophysical Journal. AASTeX LateX needed. Two figure
    • 

    corecore