32 research outputs found

    Observation Of Very High Energy Cosmic-ray Families In Emulsion Chambers At High Mountain Altitudes (i)

    Get PDF
    Characteristics of cosmic-ray hadronic interactions in the 1015 - 1017 eV range are studied by observing a total of 429 cosmic-ray families of visible energy greater than 100 TeV found in emulsion chamber experiments at high mountain altitudes, Chacaltaya (5200 m above sea level) and the Pamirs (4300 m above sea level). Extensive comparisons were made with simulated families based on models so far proposed, concentrating on the relation between the observed family flux and the behaviour of high-energy showers in the families, hadronic and electromagnetic components. It is concluded that there must be global change in characteristics of hadronic interactions at around 1016 eV deviating from thise known in the accelerator energy range, specially in the forwardmost angular region of the collision. A detailed study of a new shower phenomenon of small-pT particle emissions, pT being of the order of 10 MeV/c, is carried out and its relation to the origin of huge "halo" phenomena associated with extremely high energy families is discussed as one of the possibilities. General characteristics of such super-families are surveyed. © 1992.3702365431Borisov, (1981) Nucl. Phys., 191 BBaybrina, (1984) Trudy FIAN 154, p. 1. , [in Russian], Nauka, MoscowLattes, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151Hasegawa, ICR-Report-151-87-5 (1987) presented at FNAL CDF Seminar, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Yamashita, Ohsawa, Chinellato, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 30. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 1. , Tokyo, 1984Baradzei, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 136. , Tokyo, 1984Yamashita, (1985) J. Phys. Soc. Jpn., 54, p. 529Bolisov, (1984) Proc. 3rd Int. Symp. on Cosmic rays and Particle Physics, p. 248. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of TokyoTamada, Tomaszewski, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 324. , Lodz, 1988, Inst. for Cosmic Ray Research, Univ. of Tokyo, PolandHasegawa, (1989) ICR-Report-197-89-14, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Okamoto, Shibata, (1987) Nucl. Instrum. Methods, 257 A, p. 155Zhdanov, (1980) FIAN preprint no. 45, , Lebedev Physical Institute, MoscowSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, 76, p. 111Nikolsky, (1975) Izv. Akad. Nauk. USSR Ser. Fis., 39, p. 1160Burner, Energy spectra of cosmic rays above 1 TeV per nucleon (1990) The Astrophysical Journal, 349, p. 25Takahashi, (1990) 6th Int. Symp. on Very High Energy Cosmic-ray Interactions, , Tarbes, FranceRen, (1988) Phys. Rev., 38 D, p. 1404Alner, The UA5 high energy simulation program (1987) Nuclear Physics B, 291 B, p. 445Bozzo, Measurement of the proton-antiproton total and elastic cross sections at the CERN SPS collider (1984) Physics Letters B, 147 B, p. 392Wrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 56. , NASA Conference Publication, Washington, D.CWrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 328. , NASA Conference Publication, Washington, D.CMukhamedshin, (1984) Trudy FIAN, 154, p. 142. , Nauka, Moscow, [in Russian]Dunaevsky, Pluta, Slavatinsky, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 143. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandKaidalov, Ter-Martirosyan, (1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 141. , Nauka, MoscowShabelsky, (1985) preprints LNPI-1113Shabelsky, (1986) preprints LNPI-1224, , Leningrad [in Russian]Hillas, (1979) Proc. 16th Int. Cosmic-Ray Conf., Kyoto, 6, p. 13. , Inst. for Cosmic Ray Research, Univ. of TokyoBorisov, (1987) Phys. Lett., 190 B, p. 226Hasegawa, Tamada, (1990) 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, FranceSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, p. 111Ren, (1988) Phys. Rev., 38 D, p. 1404Dynaevsky, Zimin, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interaction, p. 93. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandDynaevsky, (1990) Proc. 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, France(1989) FIAN preprint no. 208, , Lebedev Physical Institute, Moscow(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 8, p. 259. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaHasegawa, (1990) ICR-Report-216-90-9, , Inst. for Cosmic-Ray Research, Univ. of TokyoTamada, (1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaTamada, (1990) ICR-Report-216-90-9(1981) Proc. 17th Int. Cosmic-Ray Conf., Paris, 5, p. 291(1990) Proc. Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 267. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1989) Inst. Nucl. Phys. 89-67/144, , preprint, Inst. Nucl. Phys., Moscow State UnivSmilnova, (1988) Proc. 5th Int. Sym. on Very High Energy Cosmic-Ray Interactions, p. 42. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandGoulianos, (1986) Proc. Workshop of Particle Simulation at High Energies, , University of Wisconsin, Madison, USAIvanenko, (1983) Proc. 18th Int. Cosmic-Ray Conf., Bangalore, 1983, 5, p. 274. , Tata Inst. Fundamental Research, Bombay, IndiaIvanenko, (1984) Proc. Int. Symp. on Cosmic-Rays and Particle Physics, p. 101. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1988) 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 180. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, Poland(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 251. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1991) Izv. AN USSR No. 4, , to be publishedNikolsky, Shaulov, Cherdyntseva, (1990) FIAN preprint no. 140, , Lebedev Physical Institute, Moscow, [in Russian](1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 326. , Nauka, Mosco

    Nuclear Interactions Of Super High Energy Cosmic-rays Observed In Mountain Emulsion Chambers

    Get PDF
    Here we present a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. Observations cover gamma quanta, hadrons and their clusters (called "families"). The following topics are covered, concerning the characteristics of nuclear interactions the energy region 1014-1016 eV: (i) rapid dissipation seen in atmospheric diffusion of high-energy cosmic-rays; (ii) multiplicity and Pt increase in produced pi-mesons in the fragmentation region; (iii) existence of large-Pt jets, (iv) extremely hadron-rich family of the Centauro type; (v) exotic phenomena in the extremely high energy region beyond 1016 eV. © 1981.1911125(1977) Acta Univ. Lodz ser. II, (60)(1973) 13th Int. Cosmic-ray Conf., 3, p. 2228(1975) 14th Int. Cosmic-Ray Conf., 7, p. 2365(1979) AIP Conf. Proc. no. 49, p. 334(1979) 16th Int. Cosmic-ray Conf., 6, p. 344(1979) 16th Int. Cosmic-ray Conf., 7, p. 6816th Int. Cosmic-ray Conf. (1979) 16th Int. Cosmic-ray Conf., 7, p. 284(1979) 16th Int. Cosmic-ray Conf., 7, p. 294(1979) 16th Int. Cosmic-ray Conf., 13, p. 87(1979) 16th Int. Cosmic-ray Conf., 13, p. 92(1979) 16th Int. Cosmic-ray Conf., 13, p. 98(1979) AIP Conf. Proc. no. 49, p. 94(1979) AIP Conf. Proc. no. 49, p. 145(1979) AIP Conf. Proc. no. 49, p. 317(1979) 16th Int. Cosmic-ray Conf., 6, p. 350(1979) 16th Int. Cosmic-ray Conf., 6, p. 356(1979) 16th Int. Cosmic-ray Conf., 6, p. 362Nikolsky, Proc. 9th Int. High-energy Symp. (1978) CSSR, 21. , ToborMiyake, (1978) Proc. 19th Int. Conf. on High-energy physics, p. 433Vernov, (1977) Physica, 3, p. 1601Khristiansen, (1978) JETP Lett., 28, p. 124(1973) 13th Int. Cosmic-ray Conf., 3, p. 2219Izv. Acad. Nauk USSR, ser Phys. (1974) Izv. Acad. Nauk USSR, ser Phys., 38, p. 918(1975) 14th Int. Cosmic-ray Conf., 7, p. 2365(1979) 16th Int. Cosmic-ray Conf., 7, p. 68Dunaevsky, Urysson, Emelyanov, Shorin, Tashimov, (1975) FIAN preprint no. 150Dunaevsky, Urysson, Emelyanov, Shorin, Tashinov, (1979) Acta Univ. Lodz ser. II, (60), p. 199Ivanenko, Kanevskya, Roganova, (1978) JETP Lett., 40, p. 704Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 101Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 198Wrotniak, (1977) Acta Univ. Lodz ser. II, (60), p. 165Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 182Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 186Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1977) 15th Int. Cosmic-ray Conf., 7, p. 248Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1979) 16th Int. Cosmic-ray Conf., 13, p. 82Azimov, Mullazhanov, Yuldashbayev, (1979) 16th Int. Cosmic-ray Conf., 7, p. 262Azimov, Mullazhanov, Yuldashbayev, (1977) Acta Univ. Lodz ser. II, (60), p. 275Kasahara, Torri, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 70Kasahara, Torii, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 79Shibata, (1979) 16th Int. Cosmic-ray Conf., 7, p. 176H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedZhdanov, Roinishvilli, Smorodin, Tomaszevski, (1975) FIAN preprint no. 163Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 152Ellsworth, Gaisser, Yodh, (1981) Phys. Rev., 23 D, p. 764Baradzei, Smorodin, (1974) FIAN preprint nos. 103, 104Baradzei, Smorodin, (1977) Acta Univ. Lodz ser. II, (60), p. 51Zhdanov, (1980) FIAN preprint no. 140H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedShibata, (1980) Phys. Rev., 22 D, p. 100Slavatinsky, (1980) Proc. 7th European Symp. on Cosmic rays, , Leningrad, to be published(1979) AIP Conference Proc. no. 49, p. 145Azimov, Abduzhamilov, Chudakov, (1963) JETP (Sov. Phys.), 45, p. 40713th Int. Cosmic-ray Conf. (1973) 13th Int. Cosmic-ray Conf., 5, p. 326Acharya, Rao, Sivaprasad, Rao, (1979) 16th Int. Cosmic-ray Conf., 6, p. 289Ellsworth, Goodman, Yodh, Gaisser, Stanev, (1981) Phys. Rev., 23 D, p. 771Bariburina, Guseva, Denisova, (1980) Acta Univ. Lodz, 1, p. 9415th Int. Cosmic-ray Conf. (1977) 15th Int. Cosmic-ray Conf., 7, p. 184(1979) AIP Conf. Proc. no. 49, p. 33

    Observation Of A High-energy Cosmic-ray Family Caused By A Centauro-type Nuclear Interaction In The Joint Emulsion Chamber Experiment At The Pamirs

    Get PDF
    An exotic cosmic-ray family event is observed in the large emulsion chamber exposed by the joint at the Pamirs (4360 m above sea level). The family is composed of 120γ-ray-induced showers and 37 hadron-induced showers with individual visible energy exceeding 1 TeV. The decisive feature of the event is the hadron dominance: ΣEγ, ΣE(γ) h, 〈Eγ, 〈E(γ) h〉, 〈Eγ·Rγ〉 and 〈E(γ)·Rh〉 being 298 TeV, 476 TeV, 2.5 TeV, 12.9 TeV, 28.6 GeV m and 173 GeV m, respectively. Most probably the event is due to a Centauro interaction, which occured in the atmosphere at ∼700 m above the chamber. The event will constitute the second beautiful candidate for a Centauro observed at the Pamirs. © 1987.1901-2226233Bayburina, (1981) Nucl. Phys. B, 191, p. 1Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151(1984) Trudy FIAN, 154, p. 1Borisov, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 3. , TokyoRen, (1985) 19th Intern. Cosmic ray Conf., 6, p. 317. , La JollaYamashita, (1985) 19th Intern. Cosmic ray Conf., 6, p. 364. , La JollaTamada, (1977) Nuovo Cimento, 41 B, p. 245T. Shibata et al., to be publishedHillas, (1979) 16th Intern. Cosmic ray Conf., 6, p. 13. , KyotoBattiston, Measurement of the proton-antiproton elastic and total cross section at a centre-of-mass energy of 540 GeV (1982) Physics Letters B, 117, p. 126UA5 Collab., G.J. Alner et al., preprint CERN-EP/85-62Taylor, (1976) Phys. Rev. D, 14, p. 1217Burnett, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 468. , Toky

    Происхождеие космических лучей

    No full text

    Reconstruction of the Dead (Grey) Dune evolution along the Curonian Spit, Southeastern Baltic

    No full text
    One of the unique places in Europe in both environmental and cultural terms is the Curonian Spit – a massive sandy barrier separating the Curonian Lagoon from the Baltic Sea. Straddling both the Lithuanian and the Russian parts, the spit is included into the UNESCO list of cultural heritage monuments. From the geological point of view, it is still an “alive” environment dominated by aeolian deposits. With the help of modern geophysical and geochronological techniques (ground-penetrating radar [GPR] surveys, LIDAR data, and radiocarbon [14C] dating), detailed investigations of paleosols were carried out in the Dead (Grey) Dunes massif located between Juodkrante and Pervalka settlements on the Lithuanian half of the Curonian Spit. Several soil-forming generations (phases) during 5800–4500, 3900–3100, 2600–2400, and from 1900 calendar years BP until the present have been distinguished. GPR surveys enabled a series of paleogeographic reconstructions of the massif for different time intervals of its evolutionary history

    Changes in quantitative parameters of active wind dunes on the south-east Baltic Sea coast during the last decade (Curonian Spit, Lithuania)

    No full text
    The Curonian Spit is one of the largest Holocene sand accumulation forms, stretching along the Baltic Sea coast and belonging to the Baltic sand belt. This article deals with the dynamics of the Curonian Spit dunes in the context of global climate change. Investigations were carried out in the environs of two high dunes (Parnidis Dune and Naglis Dune) over a period of 10 years (2003-2014). Levelling of cross-sections was performed using modern geodesic devices. Wind velocities and directions were measured at meteorological stations of Klaipeda and Nida. The wind regime (number of days with winds >15 m/s) was almost at the multiannual average during the study period. Sand moisture was measured in both dunes studied, and groundwater level was measured in the environs of the Naglis Dune by using ground penetrating radar (GPR). The Naglis Dune experienced a more significant lowering (by 4-6 m) compared with the Parnidis Dune over the study period, while sand deficit was greater in the Parnidis Dune (~10,000 m3). Compared with other European sand dune systems, the Curonian Spit dunes have undergone strong degradation. The article highlights possible degradation reasons and indicates the necessity of additional investigations. Only long-term investigations can contribute to disclosing the main processes both as natural background and due to anthropogenic activities, and the devising of protection measures

    Coastal dune dynamics along the northern Curonian Spit, Lithuania : toward an integrated database

    No full text
    Sand dunes are the most prominent subjects of geological and geomorphological interest along the Curonian Spit - a mega-barrier that separates the Curonian Lagoon from the Baltic Sea. To date, an assessment of various parameters of migrating dunes along the spit has been based on comparative analysis of old maps or aerial and satellite images, as well as geodetic measurements. These investigations have allowed assessment of dune dynamics over a relatively short historical period (~1700s to present). The most recent detailed investigations of the Dead (Grey) Dunes along the Lithuanian part of the spit using ground-penetrating radar (GPR) and magnetic susceptibility (MS) surveys, supported by a radiocarbon (14C) chronological framework of palaeosols and infrared optically stimulated luminescence (IR-OSL) ages of sand horizons, have advanced our understanding of aeolian landscape evolution. The interpretation of dune activity and stability phases has been generally based on IR-OSL dating results of the sand layers located between radiocarbon-dated palaeosols. However, the influence of soil-forming processes on the IR-OSL dating results related to possible migration of natural radioactive isotopes via aeolian sand layers has not been previously considered. Hypotheses of dune reactivation and migration caused by abrupt regional climate shifts, catastrophic forest fires, anthropogenic influence, and more local forcings have been tested. An integrated approach to dune investigations has offered an estimate of the rates of sand accumulation and key phases of aeolian dynamics during both stormy and calm periods, as well as helped to extend the record of dune evolution to the mid-Holocene. The palaeoenvironmental and palaeodynamic reconstructions of the Dead Dunes suggest that this mid-Holocene phase of dune activity was of a local character and likely did not exceed several centuries

    On the number of particles spectrum of extensive air showers

    No full text
    corecore