8,645 research outputs found

    Valuing the attributes of renewable energy investments in Scotland

    Get PDF
    This study was funded by a grant from the Scottish Economic Policy Network (SEPN) with funding assistance provided by the University of Glasgow, Department of Economics (Professor Nick Hanley) and the University of Sterling (Robert Wright). The goal of the project was to determine the value of differing types of renewable energy projects by how they would effect environmental and community quality of life factors. The key issues examined include; air quality, landscape, wildlife, and long term local employment. Stated preference methods were employed through the use of a discrete choice experiment survey approach. Willingness-to-pay for different types of renewable energy projects was estimated, i.e., moderate onshore windmill farms, large onshore windmill farms, offshore windmill farms, and biomass fueled power plants. The most significant findings were that rural areas likely to be most highly impacted by the new energy projects were willing to accept low or moderate environmental damage in exchange for commercial development gains. Urban respondents on the other hand were more likely to oppose any disturbance to the landscape or wildlife and had no value placed on the economics development gains for the rural areas; income level of households showed no significant difference in environmental values

    Egret: A platform for reconfigurable system-on-chip

    Get PDF
    Reconfigurable System-on-Chip (rSoC) design is inherently a complex task with enormous freedom in design parameters such as processor, operating system, and backplane buses. Design efficiency can be improved by the use of an rSoC platform which constrains these choices, and allows new designs to leverage much of the expertise of previous designs. Egret is an rSoC prototyping platform being developed at the University of Queensland, Australia, and this paper explains and justifies the design decisions for the first version of Egret

    Effect of current corrugations on the stability of the tearing mode

    Full text link
    The generation of zonal magnetic fields in laboratory fusion plasmas is predicted by theoretical and numerical models and was recently observed experimentally. It is shown that the modification of the current density gradient associated with such corrugations can significantly affect the stability of the tearing mode. A simple scaling law is derived that predicts the impact of small stationary current corrugations on the stability parameter Δâ€Č\Delta'. The described destabilization mechanism can provide an explanation for the trigger of the Neoclassical Tearing Mode (NTM) in plasmas without significant MHD activity.Comment: Accepted to Physics of Plasma

    On-chip interconnect schemes for reconfigurable system-on-chip

    Get PDF
    On-chip communication architectures can have a great influence on the speed and area of System-on-Chip designs, and this influence is expected to be even more pronounced on reconfigurable System-on-Chip (rSoC) designs. To date, little research has been conducted on the performance implications of different on-chip communication architectures for rSoC designs. This paper motivates the need for such research and analyses current and proposed interconnect technologies for rSoC design. The paper also describes work in progress on implementation of a simple serial bus and a packet-switched network, as well as a methodology for quantitatively evaluating the performance of these interconnection structures in comparison to conventional buses

    Effects of new physics in neutrino oscillations in matter

    Get PDF
    A new flavor changing electron neutrino interaction with matter would always dominate the nu_e oscillation probability at sufficiently high neutrino energies. Being suppressed by theta_{13}, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the nu_e --> nu_tau channel. The latter could be observed by means of a coarse large magnetized detector by exploiting tau --> mu decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model independent limits on them.Comment: 11 pages, 5 figure

    Cosmic String in Scalar-Tensor Gravity

    Get PDF
    The gravitational properties of a local cosmic string in the framework of scalar-tensor gravity are examined. We find the metric in the weak-field approximation and we show that, contrary to the General Relativity case, the cosmic string in scalar-tensor gravitation exerces a force on non-relativistic, neutral test particle. This force is proportional to the derivative of the conformal factor A2(ϕ)A^{2}(\phi) and it is always attractive. Moreover, this force could have played an important role at the Early Universe, although nowadays it can be neglegible. It is also shown that the angular separation Ύφ\delta\varphi remains unaltered for scalar-tensor cosmic strings.Comment: 15 pages, LATEX, no figure

    FIFO Communication Models in Operating Systems for Reconfigurable Computing

    Get PDF
    Increasing demands upon embedded systems for higher level services like networking, user interfaces and file system management, are driving growth in fully-featured operating systems such as embedded Linux. In reconfigurable System-on-Chip (rSoC) design, a critical issue is efficient integration of custom hardware and software resources, where efficiency must be considered in terms of both design time and run time. Process networks communicating via FIFO queues are a powerful model for real time digital system design, especially for data streaming applications such as multimedia devices. FIFOs also form a central part of Unix and Linux Interprocess Communication (IPC) architectures, where they are more commonly known as pipes. In this paper, we expand on this observation and show how the combination of embedded Linux, reconfigurable System-on-Chip, and FIFO communication models provide a compelling platform for efficient design- and run-time implementation of complex, high performance embedded systems

    Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: a thermo-magnetic Curie-switch

    Full text link
    We investigate a novel type of interlayer exchange coupling based on driving a strong/weak/strong ferromagnetic tri-layer through the Curie point of the weakly ferromagnetic spacer, with the exchange coupling between the strongly ferromagnetic outer layers that can be switched, on and off, or varied continuously in magnitude by controlling the temperature of the material. We use Ni-Cu alloy of varied composition as the spacer material and model the effects of proximity-induced magnetism and the interlayer exchange coupling through the spacer from first principles, taking into account not only thermal spin-disorder but also the dependence of the atomic moment of Ni on the nearest-neighbor concentration of the non-magnetic Cu. We propose and demonstrate a gradient-composition spacer, with a lower Ni-concentration at the interfaces, for greatly improved effective-exchange uniformity and significantly improved thermo-magnetic switching in the structure. The reported magnetic multilayer materials can form the base for a variety of novel magnetic devices, such as sensors, oscillators, and memory elements based on thermo-magnetic Curie-switching in the device.Comment: 15 pages, 5 figure

    Dimensional Crossover of Weak Localization in a Magnetic Field

    Full text link
    We study the dimensional crossover of weak localization in strongly anisotropic systems. This crossover from three-dimensional behavior to an effective lower dimensional system is triggered by increasing temperature if the phase coherence length gets shorter than the lattice spacing aa. A similar effect occurs in a magnetic field if the magnetic length LmL_m becomes shorter than a(D∣∣/D⊄)Îła(D_{||}/D_\perp)^\gamma, where \D_{||}/D_\perp is the ratio of the diffusion coefficients parallel and perpendicular to the planes or chains. Îł\gamma depends on the direction of the magnetic field, e.g. Îł=1/4\gamma=1/4 or 1/2 for a magnetic field parallel or perpendicular to the planes in a quasi two-dimensional system. We show that even in the limit of large magnetic field, weak localization is not fully suppressed in a lattice system. Experimental implications are discussed in detail.Comment: RevTeX, 11 pages, 4 figures; three references added and discusse

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - II: Dirac versus Bergmann observables and the Objectivity of Space-Time

    Get PDF
    (abridged)The achievements of the present work include: a) A clarification of the multiple definition given by Bergmann of the concept of {\it (Bergmann) observable. This clarification leads to the proposal of a {\it main conjecture} asserting the existence of i) special Dirac's observables which are also Bergmann's observables, ii) gauge variables that are coordinate independent (namely they behave like the tetradic scalar fields of the Newman-Penrose formalism). b) The analysis of the so-called {\it Hole} phenomenology in strict connection with the Hamiltonian treatment of the initial value problem in metric gravity for the class of Christoudoulou -Klainermann space-times, in which the temporal evolution is ruled by the {\it weak} ADM energy. It is crucial the re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose their (nearly unknown) connection to gauge transformations on-shell; this is expounded in the first paper (gr-qc/0403081). The use of the Bergmann-Komar {\it intrinsic pseudo-coordinates} allows to construct a {\it physical atlas} of 4-coordinate systems for the 4-dimensional {\it mathematical} manifold, in terms of the highly non-local degrees of freedom of the gravitational field (its four independent {\it Dirac observables}), and to realize the {\it physical individuation} of the points of space-time as {\it point-events} as a gauge-fixing problem, also associating a non-commutative structure to each 4-coordinate system.Comment: 41 pages, Revtex
    • 

    corecore