
FIFO Communication Models in Operating Systems for
Reconfigurable Computing

J.A. Williams, N.W. Bergmann, X. Xie
School of ITEE, The University of Queensland

Brisbane, Australia
{jwilliams,n.bergmann, xxie}@itee.uq.edu.au

Abstract
Increasing demands upon embedded systems for higher level

services like networking, user interfaces and file system
management, are driving growth in fully-featured operating
systems such as embedded Linux. In reconfigurable System-on-
Chip (rSoC) design, a critical issue is efficient integration of
custom hardware and software resources, where efficiency must
be considered in terms of both design time and run time. Process
networks communicating via FIFO queues are a powerful model
for real time digital system design, especially for data streaming
applications such as multimedia devices. FIFOs also form a
central part of Unix and Linux Interprocess Communication (IPC)
architectures, where they are more commonly known as pipes. In
this paper, we expand on this observation and show how the
combination of embedded Linux, reconfigurable System-on-Chip,
and FIFO communication models provide a compelling platform
for efficient design- and run-time implementation of complex, high
performance embedded systems.

1. Introduction
One of the central challenges in hardware/software codesign is

the decoupling of hardware and software processes. How can the
various computational components of a system be specified and
designed in such a way as to make transparent their instantiation
either as custom hardware in logic gates, or sequential software
executing on one or more microprocessors?

In this paper we consider FIFO-based interprocess
communication (IPC) models, and show how they fit naturally
into a reconfigurable operating system that treats hardware
processes (computational functions implemented in hardware
rather than software) as first class system objects.

In software operating systems like Linux, FIFOs (known more
commonly as pipes) are a key IPC mechanism that supports loose
coupling between separately developed software components.
Similarly, FIFOs are commonly used as the communication
mechanism in process network systems – a popular methodology
for design and implementation of real-time systems.

The primary contribution of this work is the insight that by
bringing together these two approaches, previously considered
related only in a conceptual manner, we take a significant step
towards one of the loftier goals in reconfigurable computing – the
development of a unified architecture for heterogenous
hardware/software system implementation.

2. Motivation
Our long term goal is to map hardware processes into the

regular Linux process space, complete with logic allocation and
dynamic hardware processes. Some fundamental capabilities have
already been demonstrated, such as dynamically self-
reconfiguring Linux systems running on soft-core processors [1].
The requirements of such a system are summarised below[2]:

1. support sequential (processor-based) execution, with a

familiar programming paradigm as a starting point for
application development.;

2. offer interoperability with existing general purpose
computing infrastructure, including networking, file
storage and other I/O device interfacing;

3. provide a process model that seamlessly supports
hardware, software, and hybrid processes within the same
architecture, including support for standard interprocess
communication methodologies;

4. provide a logic management interface that abstracts
operations such as dynamic partial reconfiguration, in
support of the hardware process model;

5. support integration of hardware components developed
in a variety of tool flows;

6. be scaleable, supporting single-chip, multi-chip and multi-
board computing systems.

Here, we are considering requirement 3 - how the Linux IPC

mechanisms described above can be extended such that hardware
processes, as well as software processes, may be used as
communication end points. This concept is illustrated in Figure 1
below. The natural affinity of FIFO models to the Linux
operating system and their utility in real-time hardware/software
system design make them a natural approach to consider first.

3. Background
Much has been written in support of process networks

connected by FIFO queues for modelling and implementing real-
time systems. Kahn’s Process Networks [3] are one wll-known
example. Process networks are a natural match to data-stream
processing systems, commonly found in real-time streaming and
data processing applications. The combination of high-level
synthesis with process network computation models promises a
design environment whereby real-time data processing systems
may be specified once, perhaps in a C-like language, and then be
automatically mapped into a reconfigurable computing device,
with processes implemented as a heterogenous mixture of
hardware and software.

It is becoming frequently more common that an embedded
system requires functionality well outside the traditional, narrowly
defined behaviour found in older embedded systems. This is
particularly the case for consumer-oriented devices. In addition to
the “core” functionality, it is more likely that an embedded device
will be expected to support standard networking protocols such as
TCP/IP, as well as application-level protocols such as embedded
webservers for configuration and control These factors are driving
the rise of embedded operating systems, most notably embedded
Linux. As hardware and memory resources become cheaper and
more powerful, the productivity gains from using a standardised
and well-known platform begin to outweigh any memory and
performance overheads that may result.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Much of our recent research has looked at the applicability of
embedded Linux in the newer domain of Reconfigurable System-
on-Chip (e.g. [4]). The motivation for using a fully-featured,
“conventional” operating system is quite simple. While certain
aspects of reconfigurable computing are truly novel with respect
to classic software systems, many of the same problems still
apply. It is our contention that instead of throwing out these
conventional methodologies – and with them the skills of
thousands of system designers –it is better to integrate support for
this new class of computational device into an existing context.

The main mechanisms available for inter-process
communication are FIFOs or pipes, and shared
memory/semaphores. FIFOs are essentially a special type of file
that may only be read and written and opposing ends. Processes
write data into one end, and read data from the other end, as
though they are regular files, with the operating system managing
the FIFO object in the kernel address space. Shared memory is
typically implemented by mapping the same physical memory
page into two (or more) processes’ virtual memory spaces.
Semaphores are provided to allow processes to synchronise their
actions on this shared memory.

4. Approach
We are currently using the Xilinx Microblaze soft-processor

for our reconfigurable Linux work. Of particular relevance here is
the Fast Simplex Link (FSL) interface. FSL is a unidirectional,
point-to-point bus interface, with a directed register mapped
interface to the processor. Microblaze has eight each of FSL
master and slave ports. FSL buses themselves are implemented as
32-bit wide FIFOs of parameterisable depth.

In an earlier paper, we showed how a network of
programmable coprocessors could be connected to Microblaze via
FSL channels, and how these channels could be mapped into the
Linux environment as regular FIFO-like devices [5]. Upon
reflection, we realised that this communication approach could be
generalised – yielding a generic FSL FIFO driver that can allow
any software process (Linux application) to communicate with a
hardware process connected to the Microblaze via an FSL
channel.

The FSL FIFO channel is implemented as a device driver, that
maps to device nodes /dev/fslfifo0…7. In line with Unix
philosophy, the fslfifo device is a regular Linux character device
node, and implements kernel level IO buffering. This is in

addition to the hardware buffering provided by the hardware
FIFOs in each FSL channel. Communicating with a hardware
process on the other end of an FSL connection is simple, the FIFO
file is simply opened and then read or written to as required.
From shell script, it can be as simple as

$ cat data.bin > /dev/fslfifo0

which will cause the specified data file to be streamed via the
FSL FIFO device, off to the desired custom hardware. Similarly,

$ cat /dev/fslfifo0 > mydata

will stream data from the FSL-connected device. In this way,
a hardware process attached to an FSL port may be treated like an
input or output device. In the role of a computational accelerator,
or coprocessor, a simple C program can open the fslfifo node in
read/write mode, writing data in, then reading back the resulting
processed information. The source code for the FSL FIFO device
driver has been released under the GPL as part of the standard
uClinux kernel source distribution – http://cvs.uclinux.org.

5. Conclusions and Future Work
We have described a simple yet effective approach to

integrating custom hardware within embedded Linux. By
mirroring the standard Linux pipe/FIFO IPC mechanism, it allows
software processes to communicate with the custom hardware in a
seamless and transparent manner.

Future work will include measuring and improving the
performance of the FSL FIFO driver architecture – we have so far
operated under the axiom that existence and useability are more
important than raw performance. We are working on experiments
with more sophisticated hardware process cores, with the goal of
demonstrating both improved performance and improved design
efficiency.

More broadly, the presented work is a step towards our overall
goal of fully integrating custom hardware into the embedded
Linux context. Our research so far indicates that this is a very
promising line of enquiry, and we will continue to report our
findings as they progress.

6. References
[1] J. A. Williams and N. W. Bergmann, "Embedded Linux as a
platform for dynamically self-reconfiguring systems-on-chip," in
Proc. Int. Conf. on Engineering of Reconfigurable Systems and
Algorithms (ERSA '04), Las Vegas, Nevada, 2004.

[2] J. A. Williams and N. W. Bergmann, "Reconfigurable Linux
for Spaceflight Applications," in Proc. Military and Aerospace
Programmable Logic Devices (MAPLD 04), Washington DC,
USA, 2004.

[3] G. Kahn, "The semantics of a simple language for parallel
programming," in Proc. IPIF '74, pp. 471-475, Amsterdam, 1974.

[4] N. W. Bergmann, J. A. Williams, and P. J. Waldeck, "A
Flexible Platform for Real-Time Reconfigurable Systems on
Chip," in Proc. Int. Conf. on Engineering of Reconfigurable
Systems and Algorithms, pp. 300-303, Las Vegas, USA, 2003.

[5] J. A. Williams and N. W. Bergmann, "Programmable Parallel
Coprocessor Architectures for Reconfigurable System-on-Chip,"
in Proc. IEEE Int. Conf. on Field Programmable Technology
(FPT04), Brisbane, Australia, 2004.

Figure 1. Hardware / software Interprocess
Communication

