317 research outputs found

    Charge amplification concepts for direction-sensitive dark matter detectors

    Full text link
    Direction measurement of weakly interacting massive particles in time-projection chambers can provide definite evidence of their existence and help to determine their properties. This article demonstrates several concepts for charge amplification in time-projection chambers that can be used in direction-sensitive dark matter search experiments. We demonstrate reconstruction of the 'head-tail' effect for nuclear recoils above 100keV, and discuss the detector performance in the context of dark matter detection and scaling to large detector volumes.Comment: 15 pages, 9 figure

    First Dark Matter Search Results from a Surface Run of the 10-L DMTPC Directional Dark Matter Detector

    Get PDF
    The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr CF4) 10 liter detector capable of measuring the vector direction of nuclear recoils with the goal of directional dark matter detection. In this paper we present the first dark matter limit from DMTPC. In an analysis window of 80-200 keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2} for 115 GeV/c^2 dark matter particle mass.Comment: accepted for publication in Physics Letters

    The Optical Alignment System of the ATLAS Muon Spectrometer Endcaps

    Get PDF
    The muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) at CERN consists of over a thousand muon precision chambers, arranged in three concentrical cylinders in the barrel region, and in four wheels in each of the two endcaps. The endcap wheels are located between 7m and 22m from the interaction point, and have diameters between 13m and 24m. Muon chambers are equipped with a complex on-line optical alignment system to monitor their positions and deformations during ATLAS data-taking. We describe the layout of the endcap part of the alignment system and the design and calibration of the optical sensors, as well as the various software components. About 1% of the system has been subjected to performance tests in the H8 beam line at CERN, and results of these tests are discussed. The installation and commissioning of the full system in the ATLAS cavern is well underway, and results from approximately half of the system indicate that we will reach the ambitious goal of a 40mu alignment accuracy, required for reconstructing final-state muons at the highest expected energies

    Improved measurement of the head-tail effect in nuclear recoils

    Full text link
    We present new results with a prototype detector that is being developed by the DMTPC collaboration for the measurement of the direction tag (head-tail) of dark matter wind. We use neutrons from a Cf-252 source to create low-momentum nuclear recoils in elastic scattering with the residual gas nuclei. The recoil track is imaged in low-pressure time-projection chamber with optical readout. We measure the ionization rate along the recoil trajectory, which allows us to determine the direction tag of the incoming neutrons.Comment: Contributed to the International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, Sendai, Japan (3 pages, 4 figures
    • …
    corecore