7 research outputs found

    Comparison of oxidative properties, light absorbance, total and elemental mass concentration of ambient PM2.5 collected at 20 European sites.

    Get PDF
    OBJECTIVE: It has been proposed that the redox activity of particles may represent a major determinant of their toxicity. We measured the in vitro ability of ambient fine particles [particulate matter with aerodynamic diameters<or=2.5 microm (PM2.5)] to form hydroxyl radicals (.OH) in an oxidant environment, as well as to deplete physiologic antioxidants (ascorbic acid, glutathione) in the naturally reducing environment of the respiratory tract lining fluid (RTLF). The objective was to examine how these toxicologically relevant measures were related to other PM characteristics, such as total and elemental mass concentration and light absorbance. DESIGN: Gravimetric PM2.5 samples (n=716) collected over 1 year from 20 centers participating in the European Community Respiratory Health Survey were available. Light absorbance of these filters was measured with reflectometry. PM suspensions were recovered from filters by vortexing and sonication before dilution to a standard concentration. The oxidative activity of these particle suspensions was then assessed by measuring their ability to generate .OH in the presence of hydrogen peroxide, using electron spin resonance and 5,5-dimethyl-1-pyrroline-N-oxide as spin trap, or by establishing their capacity to deplete antioxidants from a synthetic model of the RTLF. RESULTS AND CONCLUSION: PM oxidative activity varied significantly among European sampling sites. Correlations between oxidative activity and all other characteristics of PM were low, both within centers (temporal correlation) and across communities (annual mean). Thus, no single surrogate measure of PM redox activity could be identified. Because these novel measures are suggested to reflect crucial biologic mechanisms of PM, their use may be pertinent in epidemiologic studies. Therefore, it is important to define the appropriate methods to determine oxidative activity of PM

    Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis.

    Get PDF
    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO\u2082, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV\u2081) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 \u3bcg\ub7m(-3) increase in NO\u2082 exposure was associated with lower levels of FEV\u2081 (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 \u3bcg\ub7m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV\u2081 (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe

    Ambient air pollution: a cause of COPD?

    No full text
    The role of ambient air pollution in the development of chronic obstructive pulmonary disease (COPD) is considered to be uncertain. We review the evidence in the light of recent studies. Eight morbidity and six mortality studies were identified. These were heterogeneous in design, characterisation of exposure to air pollution and methods of outcome definition. Six morbidity studies with objectively defined COPD (forced expiratory volume in 1 s/forced vital capacity ratio) were cross-sectional analyses. One longitudinal study defined incidence of COPD as the first hospitalisation due to COPD. However, neither mortality nor hospitalisation studies can unambiguously distinguish acute from long-term effects on the development of the underlying pathophysiological changes. Most studies were based on within-community exposure contrasts, which mainly assess traffic-related air pollution. Overall, evidence of chronic effects of air pollution on the prevalence and incidence of COPD among adults was suggestive but not conclusive, despite plausible biological mechanisms and good evidence that air pollution affects lung development in childhood and triggers exacerbations in COPD patients. To fully integrate this evidence in the assessment, the life-time course of COPD should be better defined. Larger studies with longer follow-up periods, specific definitions of COPD phenotypes, and more refined and source-specific exposure assessments are needed

    Air pollution and lung function in the European Community Respiratory Health Survey.

    No full text
    The association of long-term air pollution and lung function has not been studied across adult European multi-national populations before. The aim of this study was to determine the association between long-term urban background air pollution and lung function levels, as well as change in lung function among European adults. METHODS: Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and the ratio thereof (FEV1/FVC) were assessed at baseline and after 9 years of follow-up in adults from 21 European centres (followed-up sample 5610). Fine particles (PM(2.5)) were measured in 2000/2001 using central monitors. RESULTS: Despite sufficient statistical power no significant associations were found between city-specific annual mean PM(2.5) and average lung function levels. The findings also do not support an effect on change in lung function, albeit statistical power was insufficient to significantly detect such an association. CONCLUSIONS: The inability to refuse the null hypothesis may reflect (i) no effect of urban air pollution on lung function or (ii) inherent biases due to the study design. Examples of the latter are lack of individual-level air quality assignment, not quantified within-city contrasts in traffic-related pollution, or the heterogeneity of the studied populations and their urban environments. Future studies on long-term effects of air pollution on lung function could increase statistical power and reduce potential misclassification and confounding by characterizing exposure on the level of individuals, capturing contrasts due to local sources, in particular traffic

    Increase in diagnosed asthma but not in symptoms in the European Community Respiratory Health Survey

    No full text
    Information on the epidemiology of asthma in relation to age is limited and hampered by reporting error. To determine the change in the prevalence of asthma with age in young adults we analysed longitudinal data from the European Community Respiratory Health Survey. METHODS: A self-administered questionnaire was completed by 11 168 randomly selected subjects in 14 countries in 1991-3 when they were aged 20-44 years and 5-11 years later from 1998 to 2003. Generalised estimating equations were used to estimate net change in wheeze, nocturnal tightness in chest, shortness of breath, coughing, asthma attacks in the last 12 months, current medication, "diagnosed" asthma, and nasal allergies. RESULTS: Expressed as change in status per 10 years of follow up, subjects reporting asthma attacks in the previous 12 months increased by 0.8% of the population (95% CI 0.2 to 1.4) and asthma medication by 2.1% (95% CI 1.6 to 2.6), while no statistically significant net change was found in reported symptoms. Reported nasal allergies increased, especially in the youngest age group. CONCLUSIONS: As this cohort of young adults has aged, there has been an increase in the proportion treated for asthma but not in the proportion of those reporting symptoms suggestive of asthma. Either increased use of effective treatments has led to decreased morbidity among asthmatic subjects or those with mild disease have become more likely to label themselves as asthmati

    Ten-year follow-up of cluster-based asthma phenotypes in adults. A pooled analysis of three cohorts

    No full text
    RATIONALE: The temporal stability of adult asthma phenotypes identified using clustering methods has never been addressed. Longitudinal cluster-based methods may provide novel insights in the study of the natural history of asthma. OBJECTIVES: To compare the stability of cluster-based asthma phenotype structures a decade apart in adults and to address the individuals' phenotypic transition across these asthma phenotypes. METHODS: The latent transition analysis was applied on longitudinal data (twice, 10 yr apart) from 3,320 adults with asthma who took part in the European Community Respiratory Health Survey, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults, or the Epidemiological Study on Genetics and Environment of Asthma. Nine variables covering personal and phenotypic characteristics measured twice, 10 years apart, were simultaneously considered. MEASUREMENTS AND MAIN RESULTS: Latent transition analysis identifies seven asthma phenotypes (prevalence range, 8.4-20.8%), mainly characterized by the level of asthma symptoms (low, moderate, high), the allergic status, and pulmonary function. Phenotypes observed 10 years apart showed strong similarities. The probability of membership in the same asthma phenotype at both times varied across phenotypes from 54 to 88%. Different transition patterns were observed across phenotypes. Transitions toward increased asthma symptoms were more frequently observed among nonallergic phenotypes as compared with allergic phenotypes. Results showed a strong stability of the allergic status over time. CONCLUSIONS: Adult asthma phenotypes identified by a clustering approach, 10 years apart, were highly consistent. This study is the first to model the probabilities of transitioning over time between comprehensive asthma phenotypes
    corecore