30,101 research outputs found
Thermodynamic properties of a dipolar Fermi gas
Based on the semi-classical theory, we investigate the thermodynamic
properties of a dipolar Fermi gas. Through a self-consistent procedure, we
numerically obtain the phase space distribution function at finite temperature.
We show that the deformations in both momentum and real space becomes smaller
and smaller as one increases the temperature. For homogeneous case, we also
calculate pressure, entropy, and heat capacity. In particular, at low
temperature limit and in weak interaction regime, we obtain an analytic
expression for the entropy, which agrees qualitatively with our numerical
result. The stability of a trapped gas at finite temperature is also explored
Dynamical properties of a trapped dipolar Fermi gas at finite temperature
We investigate the dynamical properties of a trapped finite-temperature
normal Fermi gas with dipole-dipole interaction. For the free expansion
dynamics, we show that the expanded gas always becomes stretched along the
direction of the dipole moment. In addition, we present the temperature and
interaction dependences of the asymptotical aspect ratio. We further study the
collapse dynamics of the system by suddenly increasing the dipolar interaction
strength. We show that, in contrast to the anisotropic collapse of a dipolar
Bose-Einstein condensate, a dipolar Fermi gas always collapses isotropically
when the system becomes globally unstable. We also explore the interaction and
temperature dependences for the frequencies of the low-lying collective
excitations.Comment: 11 pages, 7 figure
A fundamental approach to the sticking of insect residues to aircraft wings
The aircraft industry is concerned with the increase of drag on planes due to the sticking of insects on critical airfoil areas. The objectives of the present study were to investigate the effects of surface energy and elasticity on the number of insects sticking onto the polymer coatings on a modified aircraft wing and to determine the mechanism by which insects stick onto surfaces during high velocity impact. Analyses including scanning electron microscopy, electron spectroscopy for chemical analysis and contact angle measurements of uncoated and polymer coated aluminum surfaces were performed. A direct relation between the number of insects sticking on a sample and its surface energy was obtained. Since the sticky liquid from a burst open insect will not spread on the low energy surface, it will ball up providing poor adhesion between the insect debris and the surface. The incoming air flow can easily blow off the insect debris and thus reducing the number of insects that remain stuck on the surface. Also a direct relation between the number of insect sticking onto a surface and their modulus of elasticity was obtained
The Composite Fermion Hierarchy: Condensed States of Composite Fermion Excitations?
A composite Fermion hierarchy theory is constructed in a way related to the
original Haldane picture by applying the composite Fermion (CF) transformation
to quasiparticles of Jain states. It is shown that the Jain theory coincides
with the Haldane hierarchy theory for principal CF fillings. Within the Fermi
liquid approach for few electron systems on the sphere a simple interpretation
of many-quasiparticle spectra is given and provides an explanation of failure
of CF hierarchy picture when applied to the hierarchical state.Comment: 6 pages, Revtex, 4 figures in PostScript, submitted to Phys. Rev.
Let
Stiffness modeling of robotic manipulator with gravity compensator
The paper focuses on the stiffness modeling of robotic manipulators with
gravity compensators. The main attention is paid to the development of the
stiffness model of a spring-based compensator located between sequential links
of a serial structure. The derived model allows us to describe the compensator
as an equivalent non-linear virtual spring integrated in the corresponding
actuated joint. The obtained results have been efficiently applied to the
stiffness modeling of a heavy industrial robot of the Kuka family
Making vortices in dipolar spinor condensates via rapid adiabatic passage
We propose to the create vortices in spin-1 condensates via magnetic
dipole-dipole interaction. Starting with a polarized condensate prepared under
large axial magnetic field, we show that by gradually inverting the field,
population transfer among different spin states can be realized in a controlled
manner. Under optimal condition, we generate a doubly quantized vortex state
containing nearly all atoms in the condensate. The resulting vortex state is a
direct manifestation of the dipole-dipole interaction and spin textures in
spinor condensates. We also point out that the whole process can be
qualitatively described by a simple rapid adiabatic passage model.Comment: 4 pages, 4 figure
- …