73,064 research outputs found

    Finite element analysis of laminated plates and shells, volume 1

    Get PDF
    The finite element method is used to investigate the static behavior of laminated composite flat plates and cylindrical shells. The analysis incorporates the effects of transverse shear deformation in each layer through the assumption that the normals to the undeformed layer midsurface remain straight but need not be normal to the mid-surface after deformation. A digital computer program was developed to perform the required computations. The program includes a very efficient equation solution code which permits the analysis of large size problems. The method is applied to the problem of stretching and bending of a perforated curved plate

    Collisions of antiprotons with hydrogen molecular ions

    Full text link
    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact-energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter method are applied in order to describe the target molecule and the collision process. It is shown that three perpendicular orientations of the molecular axis with respect to the trajectory are sufficient to accurately reproduce the ionization cross section calculated by [Sakimoto, Phys. Rev. A 71, 062704 (2005)] reducing the numerical effort drastically. The independent-event model is employed to approximate the cross section for double ionization and H+ production in antiproton collisions with H2.Comment: 12 pages, 5 figures, 4 table

    Implementation on a nonlinear concrete cracking algorithm in NASTRAN

    Get PDF
    A computer code for the analysis of reinforced concrete structures was developed using NASTRAN as a basis. Nonlinear iteration procedures were developed for obtaining solutions with a wide variety of loading sequences. A direct access file system was used to save results at each load step to restart within the solution module for further analysis. A multi-nested looping capability was implemented to control the iterations and change the loads. The basis for the analysis is a set of mutli-layer plate elements which allow local definition of materials and cracking properties

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Experimental and theoretical investigation for the suppression of the plasma arc drop in the thermionic converter

    Get PDF
    Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed

    The BcB_c Decays to PP-wave Charmonium by Improved Bethe-Salpeter Approach

    Full text link
    We re-calculate the exclusive semileptonic and nonleptonic decays of BcB_c meson to a PP-wave charmonium in terms of the improved Bethe-Salpeter (B-S) approach, which is developed recently. Here the widths for the exclusive semileptonic and nonleptonic decays, the form factors, and the charged lepton spectrums for the semileptonic decays are precisely calculated. To test the concerned approach by comparing with experimental measurements when the experimental data are available, and to have comparisons with the other approaches the results obtained by the approach and those by some approaches else as well as the original B-S approach, which appeared in literature, are comparatively presented and discussed.Comment: 33 pages, 5 figures, 3 table

    Production of the PP-Wave Excited BcB_c-States through the Z0Z^0 Boson Decays

    Full text link
    In Ref.[7],we have dealt with the production of the two color-singlet SS-wave (cbˉ)(c\bar{b})-quarkonium states Bc(∣(cbˉ)1[1S0]>)B_c(|(c\bar{b})_{\bf 1}[^1S_0]>) and Bc∗(∣(cbˉ)1[3S1]>)B^*_c(|(c\bar{b})_{\bf 1}[^3S_1]>) through the Z0Z^0 boson decays. As an important sequential work, we make a further discussion on the production of the more complicated PP-wave excited (cbˉ)(c\bar{b})-quarkonium states, i.e. ∣(cbˉ)1[1P1]>|(c\bar{b})_{\bf 1}[^1P_1]> and ∣(cbˉ)1[3PJ]>|(c\bar{b})_{\bf 1}[^3P_J]> (with J=(1,2,3)J=(1,2,3)). More over, we also calculate the channel with the two color-octet quarkonium states ∣(cbˉ)8[1S0]g>|(c\bar{b})_{\bf 8}[^1S_0]g> and ∣(cbˉ)8[3S1]g>|(c\bar{b})_{\bf 8}[^3S_1]g>, whose contributions to the decay width maybe at the same order of magnitude as that of the color-singlet PP-wave states according to the naive nonrelativistic quantum chromodynamics scaling rules. The PP-wave states shall provide sizable contributions to the BcB_c production, whose decay width is about 20% of the total decay width ΓZ0→Bc\Gamma_{Z^0\to B_c}. After summing up all the mentioned (cbˉ)(c\bar{b})-quarkonium states' contributions, we obtain ΓZ0→Bc=235.9−122.0+352.8\Gamma_{Z^0\to B_c} =235.9^{+352.8}_{-122.0} KeV, where the errors are caused by the main uncertainty sources.Comment: 8 pages, 5 figures and 2 tables. basic formulae in the appendix are cut off to match the published version, which can be found in v1. to be published in Eur.Phys.J.

    Collective Quartics and Dangerous Singlets in Little Higgs

    Full text link
    Any extension of the standard model that aims to describe TeV-scale physics without fine-tuning must have a radiatively-stable Higgs potential. In little Higgs theories, radiative stability is achieved through so-called collective symmetry breaking. In this letter, we focus on the necessary conditions for a little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet models, a collective quartic requires an electroweak triplet scalar. In two-Higgs doublet models, a collective quartic requires a triplet or singlet scalar. As a corollary of this study, we show that some little Higgs theories have dangerous singlets, a pathology where collective symmetry breaking does not suppress quadratically-divergent corrections to the Higgs mass.Comment: 4 pages; v2: clarified the existing literature; v3: version to appear in JHE

    Repulsive Fermions in Optical Lattices: Phase separation versus Coexistence of Antiferromagnetism and d-Superfluidity

    Full text link
    We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long range order and a homogeneous state with coexistence of superfluidity and antiferromagnetism. We show that the energy density of a hole ehole(x)e_{hole}(x) has a minimum at doping x=xcx=x_c that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is however found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest neighbor hopping {\it t-J} model

    The impact of satellite temperature soundings on the forecasts of a small national meteorological service

    Get PDF
    The impact of introducing satellite temperature sounding data on a numerical weather prediction model of a national weather service is evaluated. A dry five level, primitive equation model which covers most of the Northern Hemisphere, is used for these experiments. Series of parallel forecast runs out to 48 hours are made with three different sets of initial conditions: (1) NOSAT runs, only conventional surface and upper air observations are used; (2) SAT runs, satellite soundings are added to the conventional data over oceanic regions and North Africa; and (3) ALLSAT runs, the conventional upper air observations are replaced by satellite soundings over the entire model domain. The impact on the forecasts is evaluated by three verification methods: the RMS errors in sea level pressure forecasts, systematic errors in sea level pressure forecasts, and errors in subjective forecasts of significant weather elements for a selected portion of the model domain. For the relatively short range of the present forecasts, the major beneficial impacts on the sea level pressure forecasts are found precisely in those areas where the satellite sounding are inserted and where conventional upper air observations are sparse. The RMS and systematic errors are reduced in these regions. The subjective forecasts of significant weather elements are improved with the use of the satellite data. It is found that the ALLSAT forecasts are of a quality comparable to the SAR forecasts
    • …
    corecore