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Abstract
 

This work investigates ion generation and recombination mechanisms in
 

the cesium plasma as they pertain to the advanced mode thermionic energy
 

converter. We have thus studied the decay of highly ionized cesium plasma
 

in the near afterglow in order to examine the recombination processes.
 

We have found very low recombination in such a plasma which may prove to be
 

of considerable importance in practical converters. Moreover we have
 

investigated novel approaches of external cesium generation, i.e.,
 

vibrationally excited nitrogen as an energy source of ionization of cesium 

ion and microwave power as a means of resonant sustenance of the cesium 

plasma. Experimental data obtained so far show that all three techniques -


i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally
 

excited diatomic gases, and the external pumping with a microwave resonant
 

cavity - can produce plasmas with their densities significantly higher
 

than the Richardson density. The implication of these findings as related
 

to Lam's theory is discussed in the report.
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IINTRODUCTION
 

The thermionic energy converter has been applied successfully to power
 

systems in a variety of space vehicles. The primary needs in such applica­

tions are high power to weight ratio and reliable performance. In the
 

advanced thermionic converter mode we now need to improve the converter
 

efficiency and cost. To achieve a reasonable reduction in cost we envision
 

operating parameters for the second generation converters which are in the
 

range of: 

Emitter temperature 7 1400aK 

- Collector temperature - 700aK 

Cesium reservoir temperature -- 400 - 450 K 

Jnterelectrode spacing < 1 cm 

It is immediately noticeable that we are demanding a strikingly large
 

reduction of the emitter temperature in comparison to the first generation
 

converters where the emitter temperature was about 25000 K. The direct result
 

of this emitter temperature reduction is the almost complete elimination
 

of the source of the cesium ions previously generated by contact with the
 

hot emitter. The cesium ionization required for space charge reduction cannot
 

be produced by the "arc drop" as was the case of the first generation converter.
 

In such converters, the arc drop (0.5 ev) is a measure of the energy used _ to
 

heat electrons in order to ionize the cesium atoms. Actually only 5% of this
 

energy is directly used for ionization of cesium. Most of it is lost by
 

collisions of hot electrons with the confining walls, while some of it is lost
 

by radiation. The ionization process of the first generation converter is
 

very inefficient. Our task is to devise an ion generation scheme for the
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second generation converter such that efficient ion generation occurs.
 

This must be accomplished without disturbing the quality of the performance
 

of the emitter and the collector electrodes.
 

It is evident that some external source of energy must be directed into
 

The energy consumption
the interelectrode spacing to produce cesium ions. 


of this source can then be interpreted as an equivalent "arc drop." The
 

performance of the overall system of electrodes and plasma should result
 

in order to achieve a
in considerable reduction of losses 


viable converter.
 

The present work aims at studying ion generation and recombination in the
 

thermionic cesium plasma and to investigate novel methods in ion generation
 

and plasma sustenance. Plasma recombination studies are typically done in
 

the afterglow of a thermionic converter in the pulsed mode. Furthermore, we
 

investigate two externally supplied sources of cesium ion generation, i.e.,
 

vibrationally excited molecular nitrogen and resonantly applied microwave
 

power. Both methods show promise in eventually achieving the desired levels
 

of plasma density with reasonably good efficiencies. It is important to point
 

out that neither method interferes adversely with the performance of the
 

converter electrodes.
 

In the theoretical treatments of the transport phenomena in the first
 

generation elementary diode, such as those used in the SIMCON and THRIVE codes,
 

the plasma is divided into three regions: the emitter sheath, main plasma, and
 

collector sheath. In these studies, the sheath regions ar.e usually assumed to
 

be of negligible thickness. The very complex plasma phenomena near the sheath
 

are treated by use of simplified boundary conditions involving random currents
 

and Boltzmann factors. The importance of an additional region between the
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emitter sheath and the main plasma region was first pointed out by Hatsopoulos.
1
 

This relaxation region connects the collisionless emitter sheath, in which the
 

plasma is not in equilibrium, to the collision-dominated main plasma, in which
 

a large degree of the local thermodynamic equilibrium (LTE) has been observed.
 

The understanding of the transport behavior in the relaxation region near the
 

emitter is important because it is the most active region as far as ionization
 

and excitation processes are concerned,. The dimension of this non-LTE relaxa­

tion region is small, typically less than 0.2mm, and is relatively insensitive
 

to the interelectrode distance. Although this region seems to be insignificantly
 

small in a wide-spaced experimental diode, it occupies most of the interelectrode
 

spacing in a practical narrow gap converter.
 

This non-LTE region is especially important in the development of second
 

generation converters because of the relatively low emitter temperature.
 

For stainless steel this temperature will be around 1400'K which will lead to
 

-3 .
a plasma density close to the emitter, considerably smaller than 1013cm


In fact, all thermionic plasmas for the second generation converters, regardless
 

whether they are operated in steady-state or pulsed mode, are expected to be
 

in non-LTE state.
 

For the first generation converter, the plasma is invariably assumed to be
 

under local thermodynamic equilibrium conditions. This means that the
 

electron density can be determined from the Saha equation, while the excited
 

states are described by the Boltzmann relation and the free electron population
 

is given by the Maxwellian distribution. In other words, by defining three
 

temperatures, the Saha temperature Ts, the Boltzmann temperature Tb, and the
 

Maxwellian temperature Tm, we may write:
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N22 3/2 -B./kT
 

N(1) 

N(P) gp -(Ep-Eq)/kTt (2) 
N(q) gq 

f(E) = _____ 3/2 -E/kTm (3) 

For LTE plasmas Ts = Tb = T ,i.e.,one temperature can be used to describe 

completely the population distributions of all free and bound electrons. 

For LTE plasmas, the differential equations governing the transport 

of particle, momentum, and energy in the interelectrode spacing are given by: 

kT dN N dTe 1 
= I NeE e e+e 3/2)kji + 

edx e dx- 4) 

11 N dT eQ= kTer - e w--kTe(~d 2) kj (5) 
ee 2 d e 


dQ F
 
dx = E i dx R -FeE C6) 

dr. 
I SN N(1) -cN 3 (7)

= 
-x e e
 

where r and Q are the electron particle and energy fluxes, respectively,
 

Ne and Ni are the electron and ion densities, respectively, E is the electric
 

field,p is the electron mobility, Ei is the cesium ionization energy,
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R is the radiative energy loss, S and a are the effective three-body ionization
 

and recombination coefficients, N(l) is the density of ground-state cesium atoms.
 

and are functions of T as defined by Nigham.2 If LTE does not exist, the

eI
 

transitions between two individual energy levels do not balance in detail, so
 

cm
However, it is well-known that for electron densities less than 10 


that a microscopic treatment of . quantities such as ion generation S and 

a recombination are necessary. 

13 -3 

or when E/p is large (E: electric field; p: cesium pressure), . significant 

deviations from the LTE conditions exist. In these cases, it has been shown 

that the interelectrode cesium plasma can be correctly described by the so-called 

collisional-radiative (CR) model. For a given neutral density, the parameters 

typically considered are the electron density and temperature, the electric 

field sustaining the thermionic discharge, and the populations of the various 

excited cesium atoms.
 

Transient studies are usually employed to determine the necessary plasma
 

parameters such as recombination ionization coefficients, the electron temperature
 

and density, and so on. Under transient conditions, departures from LTE are
 

generally larger than those indicated under steady state conditions. Consequently
 

the transient analyses given by the CR model are more sensitive to the proper
 

choices of atomic rate coefficients. Thus,.the comparison between the experi­

mental and theoretical results during the afterglow is very powerful in the
 

understanding and critique of the CR model.
 

Recently, work by Lam 3 shows that there is a basic limitation on the 

minimum electron density in the interelectrode spacing. This limitation is 

caused by the formation of a double sheath at the emitter when the emitter 

temperature is low ( Z14000 K) and the current is modestly high (J >lamp/cm2). 
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As long as this double sheath exists, the Ohmic resistivity of the plasma
 

is expected to be high and the arc drop will . remaini. at the present f0.4 ­

0.5 ev level. The only hope, according to this theory, to significantly reduce
 

the arc drop below the present level for the second generation ,converter is to
 

increase the ion concentration ni significantly higher than the Richardson
 

electron concentrationn In fact, Lam's theory indicated that when
 

ni/nR >> 102, the Ohmic resistivity decreases from a relatively constant value
iRW
 

of 4 or 5 to a value which is inversely -proportional to ni.
 

This remarkable theory is seemingly in direct contradiction with previous theories
 

which say that a high electron temperature is undesirable for the thermionic
 

converter because of the high hot electron losses.
 

It is clear from Lam's theory that in order to produce the high current
 

output ( l amp/cm2) needed at relatively low emitter temperatures 1400?K),means
 
must be found to heat up the interelectode plasma such that ni/nR _ 100.
 

This means that the degree of ionization would probably be very high. In fact,
 

if one desires-to keep the relatively low reservoir temperature (100-150'C),
 

the degree of ionization implied is as high as 30%, in contrast to the 1%
 

.value encountered in the first generation plasma. It is thus desirable to study
 

plasma generation and recombination processes at high degrees of ionization and
 

to investigate promising methods of externally generating and sustaining high
 

cesium plasma densities.
 

nR = 2 JR/< Ve> where JR is the Richardson current and < Ve> is the average
 

thermal velocity of electrons.
 

** The dimensionless Ohmic resistivity R is defined as the Ohmic plasma.voltage
 

drop divided by JJE(where J and JE are the output current and the emitter
 

current, respectively.
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II. INVESTIGATION OF THE TRANSIENT CESIUM PLASMA
 

1. Background
 

The transient behavior of the recombining plasma has been studied
 

theoretically in the past. It is well-documented that three-body capture
 

Cs+ + e- + e Cs + e CK.E.) 

is the initial step of the neutralization process in the plasmas of interest4,7
 

Cs represents an excited or ground-state seed atom. This capture step is a
 

radiationless process where the second electron carries away the excess energy
 

as kinetic energy. D'Angelo performed a calculation on a fully ionized gas
 

composed only of protons and electrons7 . He postulated the aforementioned
 

three-body initial capture step and predicted recombination rates in agreement
 

with several sets of experimental data, but his model has since proven inade­

-
quate for dense plasmas (N > 1012cm 3) because he ignored deexcitation collisions.
 
e
 

Bates, et al. 5 and Byron et al. 4'6 have performed more general studies in which
 

they have included this effect.
 

Once electrons are captured into excited states of the atom, they are not
 

considered to have recombined effectively with the ions since they may have a
 

high probability of being reionized. Byrony et al. '6 have shown that the
 

rate-limiting step in the "chain" of three-body-recombination processes is the
 

deexcitation of captured electrons. Their model utilizes the rate-process
 

principle that the slowest step in a rate mechanism is the limiting step. As
 

the system approaches equilibrium, the rate at which electronic levels are
 

crossed in the downward direction toward the ground state determines the net
 

recombination rate. This is true because once the electron has reached the
 

ground state ii has a much smaller probability of being reionized than it
 

has in the higher states.
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Byron, et al. 6 have shown that there is a minimum in the electronic
 

deexcitation rate at a particular atomic energy level. The location of this
 

level depends strongly on the temperature of the free electron gas.
 

In their application of the rate-limiting model to potassium ion-electron 

recombination, it was assumed that the electronic levels above and below a 

quantum state L are continuous bands of energy levels rather than discrete 

states. The states included in their,study or the degeneracies assigned to 

those states, were not listed. In addition, they approximated the slope of 

the Gryiinsicross section 8 by a linear function in the electron temperature 

range- 5000 K to 2000'K, over which the calculation was performed. 

The model of.Bates, et al. 5 has been applied to calculations in pure
 

9 . 10
cesium discharges and in Ar-Cs mixtures . In the work of Norcross and Stone9 

a 26-level cesium model-was developed which later was extensively used by 

researchers in the area of thermionic conversion. We intend to apply their 

steady state calculations as a reference basis for the transient calculation in 

the present work. 

Up to the present time,relatively very few reliable pulications have
 

reported on the experimental measurements of the-transient decay of cesium
 

excited states starting with very high initial degrees of ionization. Most
 

of these studies are concerned primarily with the decay of the electron temper­

ature and density '12 . Such data are extremely useful since they lead to
 

quantitative determinations of the recombination coefficients.
 

Recently, the measurements on the afterglow of neutral helium made by
 

Johnson and Hinnov 13 showed that when the classical cross sections are used,
 

the comparison.between the observed excited state population densities and the
 

solution of detailed transition rate equations give a very poor agreement.
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In addition, the interpretation of measured recombination rates, in terms of
 

a rate coefficient c(Te,Ne) that i-s to be compared with calculated values, is
 

exceedingly sensitive to errors in experimentally determined electron tempera­

tures. In order to get better agreement between CR model calculation and the
 

experimental results, Johnson and: Hinnov used semiempirical cross sectional
 

values deduced by comparing observed excited-state population densities with
 

solutions of rate equations with very good results.
 

From the above reviews it can be concluded that our knowledge about the
 

kinetic process under transient conditioning is still very poor. We hope that
 

this research can lead to a more complete understanding in this field.
 

2. The Experimental Setup
 

We used a demountable cesium thermionic diode in a pulsed mode to produce
 

the transient plasma which we investigated by optical diagnostics. The cesium
 

thermionic diode used in the experiments is illustrated schematically in Fig. [1].
 
1
 

Most parts of the diode are made of I inch O.D. Varian high vacuum components
 

with conflat flanges and OFHC copper gaskets. The collector is a 1 inch diameter
 

OFHC copper disc attached to an electrical feedthrough, the emitter is a direct
 

heated swirl filament made of tungsten wire 0.040 inch diameter mounted on a
 

dual current feedthrough. The distance between the electrodes was fixed at
 

1.7 inches. The discharge region of the diode was made of a pyrex glass cross.
 

Two 2 inch diameter optically flat windows were mounted on a pair of ports of
 

the glass cross to provide optical access to the interelectrode spacing. A
 

15 liter/sec Varian Vaclon pump was employed at the final pumping stage. Both
 

the diode and cesium reservoir were baked at 4000C for more than 24 hours while
 

-
evacuating until a residual gas pressure of 10 8 torr was reached. The bakable
 

valve was then closed. A one gram high purity cesium capsule sealed in a glass
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envelope under vacuum was put in the reservoir during assembly. After the
 

bakable valve had been closed the cesium was admitted into the system and the
 

discharge initiated.
 

Two double walled 2 inch thick asbestos ovens were constructed-around the
 

diode and cesium reservoir. Temperature controllers were used to keep the ovens
 

at the desired temperature. Since a constant cesium reservoir temperature is
 

very important in the experimenta potentiometric recorder was used to monitor its
 

It has been found that the cesium reservoir temperature
temperature variation. 


assure that the reservoir
can be controlled within - 30K during operation. To 

is the coldest spot in the system, the temperature of the converter was kept at 

least 50C higher than-the temperature of the cesium reservoir. 

The pyrex glass discharge tube was the most delicate part of the experimental 

apparatus. A heating rate slower than 100 0C per hour was used to avoid thermal
 

shock to the pyrex glass. The tungsten filament emitter was heated by a D.C.
 

power supply, the temperature of the emitter was controlled manually by adjust­

ing the current through the filament. The electrical circuit for operating the
 

diode in a pulsed mode is shown in Fig. [2],. A Velonex model 340, high-power
 

The periodic pulse signal
pulsevgenerator was used to energize the discharge. 


was supplied by a pulse generator and then amplified by the Velonex model 340'
 

providing a negative polarity pulse with positive side grounded internally. The
 

capabilities of the high power pulse generator are pulse voltage from 100 to 1000
 

volts at 5 amps, pulse width from 100 nano-second to I milisecond, and a
 

maximum duty factor of 1%. A 25 ohms non-inductive resistor was put in the
 

circuit which served as the ballast resistor to limit the diode current. The
 

The current
same resistor was also used to measure the current through the diode. 


and voltage of the pulse diode-were measured with a Tektronix type 536 oscilloscope.
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Since the current measuring resistor was not grounded, a type G plug-in unit
 

(wide band differential preamplifier) was used on the vertical input of the
 

oscilloscope. The I-V characteristic of the diode was taken with two type G
 

plug -in units on both vertical and horizontal input. Figures[3-S]illustrate
 

some of-the diode current and voltage recorded. As indicated in those figures,
 

the fast rising voltage causes the cesium vapor break down in a very short period
 

of time. After the ignition of the diode, the impedance of the diode drops to
 

a much lower value than the impedance of the remaining circuit, this phenomenum
 

essentially changes the input to the diode to be a constant current source. The
 

constant diode current during the remainder of the pulse makes the diode voltage
 

decrease as the electron density and the conductance of the diode build up.
 

After the cutoff of the pulse, the cesium ions remain in the interelectrode
 

spacing for some time before they recombine into neutral atoms. The ions
 

neutralize the space charge and are responsible for the positive output voltage
 

after pulse cutoff as shown in Figs. [3-5].
 

3. Spectroscopic Plasma Diagnostic
 

a. The spectroscopic apparatus
 

The arrangement of the optical system is shown in Fig. [4], The image of
 

the interelectrode spacing was collected by a pair of lenses and was focused on
 

the entrance slit of the spectrometer. The spectrometer used in the experiments
 

was a half meter Jarrell Ash model 82-000 scanning monochromator equipped with
 

an 1180 goove/mm grating. The diffraction grating provides a linear dispersion
 

of 16 A/mm at the exit slit and the resolution of the spectrometer is determined
 

by the width of the exit slit. Two fixed width exit slits were used in our
 

experiments. During the line shape measurements, a 15 micron slit was used which
 

givesa resolution of 0.24 A. In all other measurements, a 250 micron slit was
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used to cover a wavelength interval of 4 A, in our case this band width
 

is much larger than the half width, of all the lines Ave are interested'in and 

the line intensity obtained was assumed to be proportional to the total
 

intensity emitted from that line. The monochromator was calibrated by the
 

5461 k gr en line of the mercury lamp; and then 'checked-by other mercury-lines
 

including two violet lines at 4047 A and 4078 A, two yellow lines at 5770 A and
 

5790 A, and two red lines at 6152 A and 6234 A. An EMI 9558QB photomultiplier
 

tube was mounted at the exit slit- of the monochromator to measure the intensity
 

of light that came out of the exit slit,. The ratio of the number of electrons
 

emitted to the number of incoming photons is a function of wavelength and is
 

referred to as the quantum efficiency Q(A). It'is thus necessary to convert the
 

measured intensity (photomultiplier output current) into the true intensity.
 

For a fixed voltage applied to the PM tube, the output current of the PM tube
 

is proportional to the number of electrons emitted from the photocathode,
 

which in turn is related to the true intensity in the following way
 

IL~x 

where Np is the number of photons detected by the photomultiplier, IT(X) i§
 

the true intensity in watt/cm sec. The measured intensity is then related to
 

the true intensity by
 

No correction is taken on the line profile, as it involves-a region less than
 

10 A where the change of Q(X) is too small to be significant.
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b. Determination of electron temperature
 

Assuming the free electrons have a Maxwellian distribution of energy, the 

electron temperature was determined by measuring the relative continuum 

intensity from the radiative recombination of free electrons into-the 6P state. 

The 6P state was used, because it gives the strongest continuum radiation in the 

region of 4000 A to 5000 A and this region is relatively free from line radia­

tions. 

The radiative recombination mechanism to 6P state can be expressed as
 

.. S,+ ++ hA? (10) 

where h is the Plank's constant, v is the frequency of the emitted light and
 

hv is the photon energy released as a free electron recombined with a cesium
 

ion and becomes a cesium atom at 6P state. From the conservation of energy we
 

have the relationship
 

A~/6r) + Y1(11 
2
 

where Ei (6P) is the ionization potential of 6P state and 1/2 my is the kinetic
 

energy of the free electron.involved. The value of'Ei(6P) is about 2.49-ev
 

corresponding to a wavelength of 5080 A. The intensity of the radiative recom­

bination in the wavelength -interval between A and dA is given by
 

*I(xtx = NItxrv(V) f(V) ctV (12) 

where Ne is the free electron density, Ni is'the ion density, a6P(v) is the
 

velocity-dependent cross section for recombination of the 6P state and f(v)
 

is the electron velocity distribution. The cross section a6P(v) used here was
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determined experimentally by Agnew and Summer 17 as
 

_ ,14- Io c-n(3¢ C)- .. yi (3 

where v has the unit of cm/sec. Using the relation
 

(14)
 

where C is the speed of light, after differentiating Eqs. (11) and (13)-and
 

substituting into Eq. (12) we can get the intensity of radiative recombination
 

as
 

in C,(15) 

Assuming f(v) to be Maxwellian
 

fr) = T (16) 

Combine Eqs. (11, 13, 15, and 16), we find 

zc ) o r.ic. k$) 'A"r ' Iii 
"-r-ek r X (17) 

or
 

,[r- N] = L, 6C1 - / LT.e :­

izTe N (18) 

where C is a proportional constant. Since Te is constant during each measure­

ment, the plot of In[ 3I(A)] versus I/A gives a straight line with a slope equal 

to -hc/kTe . The electron temperature can thus be calculated by measuring the 

slope. A typical continuum radiation spectrum of cesium plasma in the region of 

4000 to 5000 A is shown in Fig. [5]. Figure [6] shows the straight line from 
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which the electron temperature was determined. Ih actual experimental results,
 

sometimes the light intensity at lower wavelengths is too low to be distinguished
 

from background noise. In such cases, we considered only the region of wave­

length above 4500 A where the light intensity'is high compared to the noise.
 

c. Measurement of electron density
 

Line profile measurements have been used in determining the electron density
 

of the cesium plasma. There are mainly three kinds of broadening-mechanisms
 

which affect the line profile of the bound to bound radiative decay, namely,
 

natural broadening, the Doppler broadening, and the pressure broadening. The
 

natural broadening is due to the uncertainty of the energy of the radiating
 

atoms, which is inversely proportional to the lifetime of the upper level of
 

the transition, and is of the order of 10-4A in cesium lines. The Doppler
 

broadening is due to the thermal motion of the radiating atom relative to
 

the observer, which is a function of the cesium gas temperature. In a typical
 

cesium thermionic plasma, the gas temperature is low and the Doppler effect
 

usually is responsible for a broadening of about 10- . The pressure broadening
 

results from the interaction of the radiating atom with neighboring atoms.
 

For most thermionic plasmas Stark broadening, which is caused by interaction
 

of the radiating particle with the electric field of charged particles, plays
 

the dominating role. The theory of Stark broadening of spectral lines has
 

18-22 
been described in a number of papers. In general the broadening is
 

treated by perturbation theroy, where the wave functions of the emitting atoms
 

are perturbed by the plasma ion and electron fields. Two different approxima­

tions are usually employed in describing the interactions of radiating atoms
 

and charged particles. Electron interactions are treated by the impact approx­

imation while ion interactions are treated by the quasi-static approximation.
 

http:papers.In
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These two approximations arise from the difference of the thermal velocities
 

of the ions and electrons. After detailed calculation using the above assump­

tion, the profile of a Stark broadened line can be approximated by a Lorentz
 

distribution
 

where I() is the line intensity at angular frequency Imaxrepresents the
 

peak intensity of the line, wo is the angular frequency at the maximum intensity
 

for the unperturbed line, d and w are the Stark shift and Stark half width
 

respectively in the unit of angular frequency. The value of d and w are both
 

sensitive functions of the free electron density, and the electron density
 

can be determined by measuring either one of them. The Stark width has been
 

19 20
 
calculated by both Griem and Stone , the Stark shift was investigated by
 

Majowski and Donohue.22 In practice, the Stark width measurement is more
 

frequently used, because it does not need very accurate calibration of the
 

absolute wavelength of the spectrometer. The Stark widths of the cesium
 

fundamental series lines are only slightly temperature dependent (a few percent
 

over temperatures from 2000 0K to 50000 K) so the temperature need not be known.
 

to determine electron density. In our experiment the-electron density was
 

determined by measuring the Stark width of the fundamental series lines and
 

comparing with the calculated values of Stone.
 

d. Measurement of the relative population of the excited states
 

The line radiation emitted is a result of the spontaneous decay of the
 

excited state atoms. The mechanism-is:
 

c~j)LI(20).-I-' 
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where p > q and hv is the energy difference between the states p and q.
 

The number of photons emitted from such a transition within unit time interval
 

and from unit volume is
 

.. 'N = t-r) -'21) 

where
 A(d,'j) = Site .9" FI (22)
2222 

is the probability per unit time that an atom emits a photon, and f is the
 
qp
 

absorption oscillator strength for transition from state q to p. If we sub­

stitute Eqs. (21 and 22) into Eq. (8), we have
 

Ilya( 6s f> r4k ~~X (23)
 

where C2 is a proportional constant. Because of the broadening mechanism we
 

have discussed previously, Eq.(23) is true only when the exit slit of the
 

monochromator is wide enough to cover the whole line. In that case the popu­

lation of the state p can be found as
 

,,lczCrX -'(2r'~N~rIn(X)(24) -

Since C2 is not related to p or q in anyway, the relative population of the
 

excited state can be found by measuring the line radiation originated from
 

that particular state. If the plasma under investigation is in LTE condition,
 

the relative population of the excited states gives the information of electron
 

temperature according to the Boltzmann relation
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~(25 

where gp and gq are the statistical weight of states p and q respectively,
 

E and E are the energies of the corresponding states and h is Plank's
 p q.. .
 

constant. Table 1 lists all the lines observed in the experiments, where the
 

oscillator strengths used are those given by Agnew and Summer, while the level
 

9
 
energies are from Norcross and Stone
 

Table 1 Observed Cesium Lines
 

Transition Wavelength Upper Level Energy -Oscillator Strength 

(A) (ev) 

7D -6P '6973 3.23 " . " 

8D - 6P 6213 3.45 .- .. 0.0439 

9D - 6P. 5845 3.57 . 0.0237. 

1D - 6P - 5635 . , 3.65' 1 "' 0.0153 

7F'- 5D 6870 >3.61 0.0409. 

8F - 5D 6629 . 3.68? 0.0252 

9F - 5D 6473 . .3.72 0.0172 

1iF ­ 5D "6366 3.76- 0.0123 

lip ­ 5D 6213 3.78 0.0082 
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4. Experimental Procedure
 

The cesium diode was operated at constant temperature during each
 

measurement. The region viewed by the monochromator is the middle part of the
 

interelectrode spacing to avoid the background noise from the electrodes. The
 

experimental range for cesium pressure varied from 0.079 to 0.4 torr, while
 

the power pulse width changed from 3 to 10 micro-second. For each operating
 

condition, the line intensity of nD-6P and nF-SD transitions for n from 7 to
 

10 were recorded as a time function. Free electron density and temperature
 

were measured at various time instances whenever it was possible.
 

During the line intensity measurements, a 250 micron exit slit was used
 

on the monochromator. Since the wavelength dial of the monochromator is
 

accurate to + 2 A only, the line position had to be located by scanning the
 

monochromator to find the maximum intensity point and fixed at that wavelength.
 

In all experiments, the synchronous signal was set at 500 nano-second before
 

the diode pulse~such that the boxcar integrator was triggered before the
 

radiation signal started. By scanning the boxcar integrator we recorded the
 

time variation of the line radiation for the time interval we are interested in.
 

Free electron temperature and density were measured using the delay mode
 

of the boxcar integrator. The aperture of the boxcar integrator was set to
 

open at a specified time position which we studied after each trigger pulse
 

while the monochromator was scanned over the wavelength interval of 4000 A to
 

5000 A to record the spectrum of continuum radiation for electron temperature
 

measurements. The same technique was employed to measure the line width of
 

6629 A (SF-SD) for electron density determination. A 15 micron exit slit was
 

used on the monochromator during line width measurements. The slit covers a
 

wavelength band of 0.24 A which is small -compared with all the line widths
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we have measured, so no correction of the instrument broadening was made.
 

The 6629 A was chosen for the electron density measurement because it gives
 

both large Starkwidth and enough intensity to allow for accurate electron
 

density determination.
 

S. The Experimental Results
 

The thermionic diode was operated at several conditions to investigate the
 

effects of varying the pulse width at different 'esium pressures upon the conver­

ter characteristics. The operating conditions are listed in Table 2.
 

Table 2 Operating Conditions of the Thermionic Diode
 

Cesium Pressure Diode Current
Run No. Pulse Width 

(microsecond) (torr) (amp)
 

1 5 0.079 1.4
 

3 . 0.079 0.12.2 

0.079 0.40
3 3 


0.457 0.48
4 3 


2.0
10 0.'079
5 


6 10- 0.457- 1.2
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The line intensity of several diffuse and fundamental series lines had
 

been recorded as a function of time. The electron temperature and electron
 

density at various time instances during the plasma transient were measured
 

whenever the light intensity was high enough. The variation of the excited
 

state populations during the pulsed operation was also estimated.
 

The-line radiation of nD-6P and nF-5D transitions for n = 7, 8, 9 and 10
 

were recorded during the pulsed operation of the the2!mionic diode. These lines
 

are emitted from states with energy ranging from 3.23 to 3.76 ev only. The
 

data for higher and lower energy levels are not available at present for the
 

following reasons. The light emitted from the'lower energy states either has a
 

very high wavelength which is difficult to be detected by the photomultiplier
 

tube or the transition is resonance radiation when severe trapping makes the
 

data reduction difficult. At the higher energy levels the populations are
 

very low and the light intensities are not strong enough to be detected. Figure
 

[7] illustrates a typical measured intensity of 7D-6P transition where the
 

pulse current was cut off at 3.5 microseconds-(the pulse starts at 500 nano­

second after the triggering of the boxcar integrator and has a duration of
 

3 microseconds). As indicated in the figure, the light intensity increases
 

during the pulse which corresponds to the increasing of population of the
 

upper transition level. After the cutoff of the pulse current, the light
 

intensity continues increasing to a maximum point before it starts to decay.
 

The light intensity increase after cutoff of the pulse was found in all the
 

data we took although the times at which the peak intensity occurred were
 

different in all cases. It is observed that the time needed to reach the
 

maximum decreased as the input pulse power increases, this time also increases
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as the cesium pressure increases. Figures [8] and [9] show the position of
 

peak intensity of 7D to 6P transition in the cases of 3 and 10 microsecond
 

pulses respectively. The decay time constants of 7D to 6P transition in Run 1
 

through Run 4 are almost the same,and are found tq 'be about 25 microseconds
 

while the result in'Run 5 is 110 microsecond and that in Run 6 is 150 microsecond.
 

Under the same operating conditions,the decay rate in other transitions are
 

usually,- very close to that in 7D to 6P transition except the 1GF-SD and 10D­

6P transition in Run S. Figures [10] and [11] illustrate the time variations
 

of relative population of excited states as deduced from the lj;ne radiation
 

measurements. The pulse cutoff time has been used in these figures as the
 

reference time. We have also plotted the relative population versus the bound
 

state energy in Figures [12] and [13] to investigate the distribution of
 

excited state populations during the pulse operation.
 

Efforts had been made to measure the electron temperature during the
 

pulsed operation of the diode. Unfortunately, the only two cases we havebeen able
 

to record are those from 10 microsecond pulses. In the case of shorter pulses,
 

'the intensity of the continuum radiation spectrum is: too low to be detected.
 

*Itis believed that the electron temperatures in these cases were both very
 

low and changing fast which makes them difficult to measure. Figure [14]
 

shows the electron temperature variation as a function of time as deduced
 

from the experimental data. During the data reduction of the electron temper­

3
 
atures, it is found that after the pulse cutoff, the ln[X.3I..)] vs lAplots
 

are very close to a straight line at all times iwhile the plot for data obtained
 

inside the .pulse appear differently. Figure [15]' shows the plot for Run 6
 

at 7t5 microsecond after the pulse starts. It indicates that the large electric
 

field .during the pulse produces a substantial amount of high energy electrons
 

for the excitation of'the plasma.
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Free electron density had been measured in several cases and the
 

results are shown in Fig. [16]. The measurements show. an ionization of
 

about 20% in all cases right after the pulse cutoff. It also shows a rela­

tively slow variation in electron density during the relaxation of the plasma.
 

The very small recombination rate indicated by Fig. [16] is very striking
 

and may prove to be of great practical importance in the thermionic plasma.
 

6. Theoretical Calculation of the Plasma Relaxation
 

Up to the present time, the so-called collisional-radiative (CR) model
 

has been used extensively to calculate the distribution of bound states population
 

in a plasma. In this section we will try to formulate the transition processes
 

which represent the mechanisms during the relaxation of a cesium thermionic
 

plasma. The discussion follows closely Bates, Kingston and McWhirter's5 CR model
 

with the addition of a conservation of particle equation and an energy balance
 

equation. All these equations are solved simultaneously to find the time
 

variation of the plasma parameters.
 

Under normal plasma conditions for cesium discharges, the mechanisms that
 

are important in determining excited state populations are electron-atom
 

collision processes and radiative decays. Molecular processes are not important
 

because of the low concentration of molecular species. Atom-atom and atom-ion
 

collisions can be neglected since their excitation and ionization rates are much
 

lower than the electron rates. The cesium plasma was assumed to be homogeneous
 

in the region of observation. The free electrons were assumed to be in Maxwellian
 

distribution at all times. The plasma was optically thin for all radiations except
 

for resonance radiations.
 

Considering an ionized cesium vapor composed of free electrons, singly ionized
 

cesium atoms and neutral atoms in bound states, the rate of change of population
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in each state can be expressed as
 

-clb~r hI(r)N e K(r,C) -SJ4(r)WZI%K r,9) 

-N~r)CA( ~Z+NeZK(,T(4Xicr tr-­

+ 26 

++r (Ne (C ) 4-P (26)1Y. 

where N(p) is the density of atoms in level p, Ne is the free electron density,
 

K(p,q), is the collision-induced transition rate from level p to level q, c denotes
 

the electron-continuum and K(c,p) is the three-body recombination rate to level
 

p. The spontaneous decay rate from level p to level q is A(p,q) and the radia­

tive recombination rate to level p is (p). All the transition rates except the
 

spontaneous decay rate are strong functions of free electron,temperature Te
 

Similar to the bound state rate equations, the free electron continuity
 

equation can be written as
 

,-t- "e' + )(27) 

r 

Assuming that there is no loss of electron energy due to processes other
 

than collision and radiation, the energy balance equation is
 

1r~v a[Jlk L We + WA (28)
at.E-1 k-4a -. Y44 
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Where We is the total electron kinetic energy in a unit volume and can 

be expressed as,
 

FNe'= .rej Tee - N (29) 

where ce is the average energy of an electron. The terms on the right hand
 

side of Eq.-(28) represent the electron energy change due to elastic collision,
 

inelastic collision and radiation, respectively. The elastic collision term
 

can be written as
 

t e a- (50) 

where Me and Ma are mass of electron and cesium atoms, respectively. 6_ and Ea are
 

the average kinetic energy of each electron and atom as defined in Eq.C4). V
 ea
 

is the collision frequency between electron and atom and can be expressed as
 

t~e&ea.(31) -Je Ja 

.where a is the collision cross section between electron and atom which has
 ea
 
-14 2
an average value of 4 x 10- cm Since the velocity of cesium atoms is much
 

slower than the electron velocity, the relative velocity between electron and
 

atom vea was replaced by the average electron velocity in Eq.(32). Insert Vea
 

into Eq.(31), and we find
 

(AS) = 424- ? -Te g11hjj,-T.)32 
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the energy change due to inelastic collision is,
 

r
r i 

n c)wfl Cr)(33)' 
where E.(p) is the ionization potential of level p. The electron energy change
 

due to radiation is
 

-2: - (.34) 

differentiate Eq. (29) and we find
 

We Y e (35) 

substitute Eq. (35) into Eq. (28) and rearrange the terms, we can obtain the
 

temperature rate equation as follows
 

-i t . 6 

4-eJ 4-}kLW (36) 

Now, the whole system is described by the differential Eqs.t26, 27 and 36).
 

Unfortunately, there are infinite numbers of bound ,states in the atomic structure
 

and it is not practical to solve the whole set of differential equations. Since
 

the more loosely an electron is bound the greater the relative probability of a
 

collision induced transition versus spontaneous decay, the result is that the high
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bound states are in a local thermodynamic equilbrium (LTE) with the electron
 

continuum. Under this assumption the population of the high bound states are
 

given by the Saha equation at the free electron temperature and density, i.e.
 

N 6r[ (37) 

where gp is the degeneracy of level p. It has been found by Norcross and Stone9
 

that in a cesium plasma under the condition of Te from 15000 K to 3000 0K, Ne from
 

-
1012 to 101cm and cesium vapor pressure from 102 to S torr, 26 non-equilibrium
 

levels will be sufficient for the calculation of population distribution in the
 

plasma. An additional 27 levels with Saha populations are needed to complete
 

the sums in Eq.(26) giving a total of 53 levels. Higher levels are neglected
 

-because of their-low population and smaller contribution to the system.
 

After neglecting the equations describing the high energy levels, we have
 

a set of n+2 simultaneous differential ,equations to be solved, where n is the
 

number of non-LTE states considered. Each one of the n states is described by
 

a rate equation according to Eq.(26). The other two eiaations are Eqs.(27 and
 

36). 

A Fortran IV computer program was written to solve the n+2 equations numer­

ically, where n is set to be any number less than or equal to 26. The input data
 

needed for the calculation are cesium reservoir temperature, free electron temp­

erature and density which are measurable quantities in the 'experiments. To
 

start the calculation we need the distribution of the bound states population
 

as the initial conditions. In the computer program a choice from three kinds,of
 

distributions is available, these are (I) LTE, (2) steady state non-LTE and (3)
 

experimental data. The steady state non-LTE condition mentioned above is the
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solution.of the rate equations when all the derivatives are equal to zero.
 

With the knowledge of initial conditions all the n+2 equations are integrated
 

simultaneously to find the new distribution of the bound state populations as
 

well as the free electron density and temperature. The numerical method used
 

As in a typical nonequilibrium
for the integration was found to be quite critical. 


problem the differential equations in the present problem can be quite stiff,
 

i.e., they tend to oscillate severely around the equilibrium values when the
 

Because of the stiffness of the equations,
variables are close to equilibrium. 


as the Adam-Moulton predictor­conventional explicit computation methods such 


corrector formula or the Runge-Kutta method result in extremely long computation
 

time. In this calculation, an implicit integration method is used as recommended
 

2 3
 
by Lomax and Baily


Most of the atomic transition parameters are strong functions of free
 

electron temperature. The calculation of the transition rates involve the
 

integration of the product of transition cross section and the free electron
 

Since the numerical method
velocity distribution and are very time consuming. 


for solving the transient plasma involves the use of several different tempera­

tures during each step of integration, it is not practical to calculate all the
 

parameters each time we change the temperature. In practice, we have calculated
 

each of the transition parameters for several temperatures ranging from 1000'K
 

to 40000K and then fit these data into a polynomial or an exponential form with
 

the exponent in polynomial form according to the nature of the parameter. The
 

atomic transition rates which appear in the program listing were obtained in
 

this way and were found to have saved a substantial amount of computing time.
 

http:solution.of
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7. Discussion
 

From the results of the experiments it is felt that calculation of the time
 

-response of the excited state population densities is not possible at this
 

time. The main reasons are:, (1) The initial conditions for the calculation are
 

not available. Because of the short pulse width used in the experiments, the
 

plasma condition at the time of pulse cutoff was far from the steady state non-LTE
 

condition as can be calculated by solving the rate equations.
 

(2) For a rapid changing plasma as we have observed the use of detailed balancing
 

technique in finding the atomic parameters is not valid. The difficulties in
 

getting suitable atomic transition parameters is fatal to the theoretical calcu­

lation.
 

Radiation and electron collision are the two major processes which govern
 

theatomic-transitions. The rate at which the collisional transition occurs
 

depends strongly upon the amount of energy transferred during the collision.
 

In the atomic structure, the energy of the lower states are relatively widely
 

separated while the higher states are closer to each other, the result is
 

that the collisional transition rates betweei- the higher levels are much higher
 

than those between lower levels. On the other hand, the radiative transition
 

rates are smaller for the hgiher levels because the electrons are more loosely
 

bounded.
 

It is well known that if the electron collisions dbminate the atomic
 

transition processes, the plasma essentially will come to an LTE condition after
 

a time long enough for collisions to take place. In a low density plasma,
 

usually the higher levels are collision-dominated and are in equilibrium with the
 

free electrons while the radiation effect becomes greater at lower levels and
 

the deviation from LTE is significant. It has been shown by Norcross and Stone9
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that LTE- exist in a cesium plasma only if the free electron density is higher
 

16 -3
-
than 10 cm . In the same paper, they also found that because of the severe
 

rapping of the.resonance radiations, the net transition between the ground
 

state (6S) and the first excited state(6P) is almost purely .collisional. In
 

other words, although the lower energy levels deviate from LTE significantly,
 

the relative populations between these two states have a Boltzmann temperature
 

equal to the free electron temperature.
 

During the pulse operation of a thermionic diode the distribution of the
 

bound state populations are more complicated and we will have to analyze
 

-separately the changing of the excited° state populations within the pulse and
 

after the cutoff of the pulse.
 

Almost all the cesium atoms are in their ground states before the pulsing
 

of the diode. Right after the electric field is applied to the electrodes,
 

the free electrons (mainly thermionic electrons) are accelerated by the electric
 

field and gain the energy before all other particles do. The energized electrons
 

then transfer their energy to the neutral atoms through electron-atom inelastic
 

collisions. The rate at which the electrons interact with the neutral atoms
 

determines the population of the excited states during the transfer.
 

The electron-atom collisional excitation cross section o(p,q) for transition
 

from level p to level q has been investigated by Gryzinski
88 . Since all the
 

excited state populations come from the gound state and the cross section
 

a(l.q) decreases sharply with increasing q,, it is obviousthat the transition
 

from 6S to 6P is the dominating process which limits the growth of the excited
 

state populations. Assuming a Maxwellian distribution of the free electron
 

velocity, we &an obtain the col'lisional excitation rate coefficient K(1,2)'
 

for transition from 6S to 6P as a function of free electron temperature. The
 



31.
 

excitation rate coefficient K(1,2) = <c(l,2)v> is the average collision
 

a
frequency of each electron with a ground state cesium atom which induces 


6S and 6P transition.. The average time that such a collision occurs to a
 

ground state atom is
 
1 

(38)­1,2 N K(1,2)e 

For a typical steady state cesium themionic plasma with an electron temperature
 

of 25000K and electron density of 1013cm
-3 , the time needed for 6S and 6P
 

states to reach equilibrium with the free-electrons is in the order of one mili­

second. Since the time necesiary to reach the equilibrium is mu6h longer than
 

the pulse width in our experiments, it is clear that the population of the
 

6P state is always lower than that predicted by Boltzmann distribution at the
 

electron temperature. Figure [17] illustrates the bound state population
 

Curve 1 is
distribution for different times during the applied power pulse. 


Curve 2 represents the distribu­the distribution before the pulse is applied. 


tion a short time after the pulse started while the population of the 6P state
 

Once the electrons
is still far from equilibrium with 6S as discussed above. 


have been excited to 6P- state or higher, they have a much higher -collision
 

upper states. If the radiative decay rate is
frequency to be excited to 


negligible compared with the collision transition rate, this-means that the
 

absolute value of the slope of the higher energy part of the curve will be
 

smaller than that between 6S and 6P states, but the high radiative rates in
 

Since the radiative rate
the intermediate states keep the population low. 


becomes relatively small at higher levels,, the result is that the slope of the
 

population versus energy curve decreases monotonically as the energy increases
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until some critical energy where the effect of the radiation is negligible
 

compared with the collisional transition process. Population for levels with,
 

energy higher than the critical energy are in collisional equilibrium with the
 

free electrons and the high energy part of the curve shows aconstant slope
 

which corresponds to.the free electron temperature. In the case of a longer
 

pulse, curve 3 illustrates that more ground state atoms have been excited which
 

in turn give higher excited state and electron populations. The enhancement in
 

electron density produces higher collisional transition rates and makes the
 

critical energy for collision dominated transition move to a .lower-energy.
 

Curve 4 of Fig. [17] shows the pbpulation distribution when the pulse width is
 

so long that a steady state npnLLTE condition is achieved. In such a case, both
 

the high energy levels and the population between 6S and 6P states are in
 

equilibrium with the free electron temperature and give the same slope in
 

curve 4, the intermediate states have higher radiative rates and have a slope
 

higher than both sides of'the curve.
 

After the cutoff of the pulse the excited plasma redistributes it population
 

and decays back to the original condition. Since the decay of the plasma is.
 

the result of energy loss, it is necessary to analyze this problem from the
 

energy point of view. Although the high energy levels have high collision
 

rates with the free electrons, the effect on electron energy due to these
 

levels are not very important because of 'their low population and relatively
 

small amount of energy transferred during each collision. So the rate of decay
 

of the electron energy is mainly determined by the low energy states. As we
 

have discussed previously, at the time the pulse is terminated, the free elec­

trons havea temperature higher than the Bolzzmann temperature between 6S and 6P
 

states. The high population in the 6S state makes,the collision excitation
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rate of 6S faster than the de-excitation rate of 6P. A rough estimate shows
 

that for a plasma with ground state populationmof 10 15cm-3 and free electrons
 

-
at 1014cm 3 and 2000'K, the rate of free electron energy loss due to the
 

excitation of 6S to 6P transition is about 0.5 joule/sec., while the total
 

-6
 
kinetic energy of the free electrons is only 5 x 10 joule. In other words;
 

the electron temperature drops very fast initially. The loss of electron energy
 

slows down the excitation rate and makes the de-excitation process-more and more
 

important. After the electron energy drops to a point where the excitation
 

rate of 6S and de-excitation rate of 6P becomes comparable the electron energy
 

change due to the inelastic collision becomes relatively small, and the radia­

tive processes which carry the energy out of the plasma dominate the change
 

of electron energy.
 

As a summary, during the early stage of the relaxation process the electron
 

energy drops drastically but the nature of this drop results in a redistribution
 

of the plasma energy instead of a net loss of plasma energy. It is the radiative
 

processes which result from the decay of the excited state populations that
 

actually drain energy from the plasma.
 

For the change in high energy level populations, the mechanism is totally
 

different. Figure [18] shows the population distribution for different time
 

instances during the relaxation process. Curve 1 illustrates the populations
 

when the pulse is cut off. Because of the very rapid collisional transitions
 

and long radiative lifetimes, the highest states must be in equilibrium with
 

both the free electron density and temperature, and their populations follows
 

the Saha equation. Immediately after the cutoff of the pulse, the electron
 

temperature decreases rapidly but the electron density does not change very fast.
 

According to the Saha equation, this means that the populations in these states
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increase because the lowered electron temperature slows down the collisiona-l
 

ionization rates which in turn causes net recombination to populate the high
 

energy levels. Curve 2 in Fig. [18] shows such an equilibrium between the
 

high energy states at the lower electron temperature. Similarly to the case
 

we have discussed in the excitation of the plasma there exists a critical energy
 

where the rates of collisional transition and radiative transition are comparable.
 

For levels below the critical energy the radiative transition rate is relatively
 

high such that the deviation from Saha equilibrium becomes, significant. At
 

later stages of the relaxation process'the loss in bothelectrontemperature
 

and density causes an increase in the critical energy and the relatively high
 

radiative transition rates make all the-excited states populations drop instead
 

of increasing, which is shown in curve 3 in Fig. [18].
 

Since there is no energy source for the plasma after the cutoff of the
 

pulse, the behavior of the relaxation process depends solely on the plasma
 

condition at the end of the pulse.
 

Suppose that we have two plasmas with different degrees of excitation.
 

We thus expect the relaxation of the plasma with a higher degree of excitation
 

to act in the following way:
 

(1) As we have discussed, the more highly excited plasma should have a smaller
 

difference between the initial free electron temperature and the Boltzmann
 

temperature tetween the 6S and 6P states. 'This smaller difference will result
 

in a smaller drop in electron temperature right after the pulse cutoff. Conse­

quently, the expected increase in the excited state populations after cutoff
 

must be smaller.
 

(2) The higher electron temperature of this plasma during the whole relaxation
 

process keeps the rate of electron recombination lower and should result in a
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longer decay time for the plasma with the higher degree of excitation.
 

The above arguments can interprete some of the observed phenomena such
 

as the longer decay time constant for longer pulse and the fact that the time
 

necessary to reach the peak intensity is longer for those lower current cases,
 

but we are still far from the quantitative understanding of the kinetic process
 

in the transient plasma. Much more data in wider experimental conditions are
 

needed for the quantitative analysis of the relaxation phenomena. It is hoped
 

that this work has provided a good start for future research in this area.
 

III.VIBRATIONALLY EXCITED MOLECULAR NITROGEN AS AN IONIZATION SOURCE IN THE
 

THERMIONIC PLASMA
 

1. Background
 

In laser work the vibrational levels of molecular species often serve as
 

storage tanks of energy obtained from electrical discharges. Nitrogen is partic­

ularly useful in this respect because its excited vibrati6nal energy levels are
 

exceptionally long lived due to the fact that the nitrogen molecule possesses
 

no electric dipole moment. Once the molecular vibrational levels are excited
 

they cannot decay to the found state (v=O) levels through electric dipole radia­

24

tion2 . Deactivation can proceed only by collisions with other molecules or
 

atoms or with the walls of the confining vessel. The wall deactivation coeffi­

25 -3
cient of nitrogen is small (about 1 x 10 for stainless,steel., the same order 

or less for most other common surfaces) so most of the deactivation proceeds by
 

collisions with neutral cesium atoms which often result in cesium ionization
 

(see Fig. [1]). 26 

In this work we report experimental observations on the direct ionization
 

of Cs atoms by vibrationally excited N2 ' It has been known for some time that
 

molecular nitrogen in the presence of alkali atoms (Na, K, Cs) will quench
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resonance radiation under a variety of laboratory experimental conditions.
27'28
 

The reverse process, i.e., the excitation of alkali atoms by vibrationally
 

excited'N2 has also been reported. 29,30 'These reactions are important in the
 

understanding of certain types of aurora in which strong alkali metal radiation
 

is observed. In recent years, interest in the transfer of vibrational energy
 

from N2 to excite other atomic or molecular gases has. been expanded because of
 

the rapid development of high power lasers. For such lasers the vibrationally
 

excited N2 is produced either by a discharge or by the rapid gas dynamic expansion
 

technique.
 

The present study has been carried out to investigate the possibility of
 

using N2 as a gas additive for the development of thermionic topping generators.
 

In-such generators, it is desirable to produce an enhanced Cs ionization in the
 

interelectrode spacing. In the following section the. experimental procedure
 

used in the present study will first be described. This will be followed by a
 

discussion on these experimental observations.
 

2. Experimental Measurements
 

The plasma under investigation is produced'in a thermionic discharge,tube
 

which is completely demountable, constructed with 1.5" I.D. high vacuum components.
 

The emitter is-made of a swirling tungsten filament made of 0.040"'wfre and the
 

collector is a 1" diameter stainless steel disk. The interelectrode spacing
 

is set at 0.5". The syste is outgassed at 350 0C for 24 hours, until the gas
 

-
pressure of 10 7 torr is reached. High-grade nitrogen (impurity levels less than
 

0.5 parts per million) is introduced into- the system through the stainless steel
 

transferTine'. Cesium vapor is thenintroduced into the system by connecting
 

the cesium reservoir. The test section during the experiment is maintained at
 

a temperature about 50C higher than the reservoir temperature. The emitter is
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heated to a temperature of 1180 0K for all runs and it is determined b
 

pyrametric measurement through an optically flat window.
 

The I-V characteristics with the cesium pressure fixed at 0.1 tort and
 

the nitrogen pressure varying from 0 to 1 torr basically correspond to cesium
 

thermionic discharges in which the nitrogen acts as an energy absorber which
 

quenches the cesium radiation produced by the discharge.
 

As the nitrogen pressure continues to increase a new phenomenon is observed
 

as indicated in Fig. [19]. Here, the discharge produced at high ignition voltages
 

( >30 volt for our experiments) is similar to a pure nitrogen discharge. This
 

is verified by spectroscopic'measurements (Fig. [20]) which show predominantly
 

the first and second positive bands of N2* The intensity of the nitrogen radia­

tion decreases monotomically from point 1 and approaches zero near point 3.
 

However, the intensity of the cesium radiation first decreases as the applied
 

voltage decreases; but from point 2 to point 3, cesium radiation increases,
 

reaching a maximum at point 3 before plunging down to zero. Cesium radiation
 

is also observed but at much lower intensity. After the ignition further
 

increase in voltage does not lead to any noticeable increase in current.
 

However, if one steadily reduces the voltage, a significant increase in current
 
that
 

appears. This is demonstrated in Fig. [21] in which we see fhen the voltage is
 

reduced manually in steps, step-increases in current occur. The step-increase
 

is very small initially; but increases drastically as the voltage is further
 

reduced, reaching a maximum and then dropping sharply to zero. All step-increases
 

in current take place after a delay of.about a couple of seconds wherever the
 

voltage is reduced. It appears for all cases, that a minimum voltage is required
 

to maintain the nitrogen discharge. Below this voltage, the current drops to
 

zero and the discharge is extinguished.
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The ignition voltages are directly proportional to the nitrogen pressure
 

and are relatively independent of the cesium pressure because of the large values
 

of the pressure ratio used in our experiments PN2/PCs 40). At high Cs
 

'.
 
pressure the increase in current is so pronounced that plasma oscillations occur
 

3. Discussion of Results
 

The portion of the curves where the current shows a delayed increase after
 

decreasing the voltage, is to the best of our knowledge, the first experimental
 

observation of the ionization of cesium atoms by the vibrationally excited N2
 

in an N2-Cs discharge which can be described in the following reaction
 

N + Cs + + e + AE
 
2 e 2 +C (39) 

To answer the question as to the nature of the vibrationally excited states
 

N2 in reaction (39), we propose that the vibrationally excited ground states
 

N2 (X-Zg+ ) are responsible for the ionization of cesium by either a one-step
 

process
 

N2 ( v z 15) + Cs(6S) - N (v = 0) + cs + e + AE2 2 C40) 

or a two-step process 

Cs(6S) + a Cs(6P) + e + AE 

*,jVlO.1) ) + Cs(6) (
6s) N (V = 0) + Ca+ +.e (4.1) 
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Figure [22]shows the relative energy diagrams for N2 and Cs. As was pointed
 

out by Haug et al.*,
28 

neither reaction (40) or (41) requires perfect energy
 

matching between the vibrational transitions in N2 and the ionization energies
 

(E6s-F continuum= 3.89v, E6P-Econtinuum= 2.45v). The excess energy appears as
 

the kinetic energy of the product ion or electron AE.
/ 

The generation of N(XXg+) with V > 10 can come from the decay of high
 

31
 
electronically excited states


N + N + M-PN2 (C3lu) orN (3 11g) 

-7 -8 . 

'OS 3 los * 3 + 1-rZg) (42) 

2nd 1st
 
positive positive
 

The first and second positive bands are observed (Fig.[20]), thus reaction
 

(42) definitely contributes to the generation of the vibrationally excited X Eg
+
 

in our experiment. Judging from the fact that the first and second positive
 

bands disappear completely just before the current drops sharply to zero
 

(Rig. [21]), the contribution from reactions (42) must play a dominating role
 

in theprbduction of the vibrationally excited N2 (Xg +). The contribution of
 

direct electron excitation of N2(X Zg+) depends on the electron temperature. The
 

cross section for such excitations has a sharp peak when the electron energy is
 

2
around 2.1 ev . Our average electron temperature is expected to be much less
 

than 2.1ev. Thus, the contribution from direct electron impact production of
 

vibrationally excited N2(XIg + ) is believed to be less important than reactionC42).
 

The deactivation rate of the vibrationally excited'states N (xl1g±
) is
 

governed by collisions with cesium atoms and the walls of the test section,
 

+33
 
Since the surface deactivation rate of N (XlZg+) is very small , most of the
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vibrationarly excited states are used either to excite or to ionize Cs atoms.
 

When the deactivation rate is larger than the rate of generation, reaction
 

,(39) reverses its direction and the current plunges 
rapidly to zero.
 

'To assess the effect of lowering the applied voltage on the rate of
 

generation of the vibrationally excited state, it is important to point'
out
 

that the distribution if highly 
non-Boltzmann.34
 

The population distribution is a very sensitive function of gas kinetic
 

A very small reduction in the kinetic temperature T can lead
 temperature. 


Since the
 
to drastic increases in the vibrational population in this region. 


oven temperature is maintained at a temperature 50
0C higher than the reservoir
 

temperature, the kinetic temperature of N2 must be larger than the oven
 

As the voltage is
to the collisions with hot electrons.
temperature due 


reduced, T must be decreased accordingly which causes the observed increase
 

in current. The-observed delayed time (~ 2 sec) can be attributed to the
 

time necessary for the vibration population distribution to relax from 
one
 

temperature to another.
 

http:non-Boltzmann.34
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IV. 	PLASMA SUSTENANCE BY THE RESONANT APPLICATION OF MICROWAVE POWER.
 

1. 	Background 

It has been known for some time in fusion plasma research that 

significant plasma densities can be achieved by the application of microwave
 

power. Such plasma generation methods are quite attractive because they
 

do not require the insertion of extraneous electrical leads as is required
 

Moreover it allows
in the triode configuration of the thermionic converter. 


for continuous power producing operation by the steady application of
 

microwave power for plasma sustenance, in contrast to the pulsed modes of
 

converter operation which can provide power output only during the off
 

cycle of the applied ion generating pulse. Moreover employment of
 

microwave energy for plasma support offers the possibility of utilizing
 

It
resonant configurations with well established plasma conditions.
35 


is believed that such resonant application of microwave power to plasma
 

support will prove an energetically inexpensive means of plasma sustenance.
 

Tonks36'37'38 and others in 1931 noticed that when an electric field was
 

occdrred.
applied perpendicular to the axis of a cyclindrical plasma, resonances 


Later Dattner47 experimentally determined that these resonances were di­

polar and they are due to oscillations of charge.
 

There are three kinds of RF discharge in a plasma depending on the
 

'40 '41 These RF discharges are
background pressure and driving frequency.
39


multipacting plasma, resonantly sustained plasma or a diffusion controlled
 

plasma. At pressure of approximately 0.1 torr, when collisions are dominant
 

in the plasma, we have a diffusion controlled discharge . At a lower pressure
 

of about 10- 3 torr, the RF plasma has the characteristic of a plasmoid which
 

is characterized by sharp luminous boundaries and the fact that it can 
be
 

maintained by a relatively low power driving source, and is called a
 

http:frequency.39
http:conditions.35
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-5
 
resonantly sustained discharge. For very low pressure, approximately 10


torr, the plasma is a multipacting discharge.
42 5 0
 

Taillet51 observed that inresonantly sustained plasma, the electric
 

field-in the plasma is much larger than the field in the absence of the plasma. The
 

-responseof an ionized gas to very high frequency electric waves has been
 

the subject of many investigations. Oscillations in the neighborhood of
 

109 hertz was originally found by Penning and was further investigated by
 

Tonks and Langmuir using the low pressure mercury arc. They found that
 

the observed high frequency oscillations corresponded to the plasma
 

electron oscillations as shown by the following equation.
 

= S,7 " 4srY2 Y (4-3) 

where f is the oscillation frequency, me is the electron mass, n is the
p ep
 

plasma density.
 

An important property of plasma oscillation is that its half period
 

represents a response time in which the plasma reacts to an externally
 

applied electric field. Thus if a field of frequency f is applied to a
m 

plasma where the plasma electron oscillation frequency fp is larger than fm,
 

electrons will move so as to oppose the applied field by setting up a field
 

between them and the stationary ions. The shielding movement tends to reduce
 

the net field in the interior of the plasma to zero. However, If fm >p
 

the electrons cannot respond rapidly enough to cancel the externally applied
 

field, and consequently the field penetrates the plasma. Thus for fP/fM <1,
 

the field penetrates the plasmai.e.the plasma-is transparent, whereas for
 
fp/fm > 1, the electron motion shields the interior and the plasma is opaque 

to the externally applied fields. At fp=fm, a critical relation holds
 

http:discharge.42
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between the applied microwave field and the plasma resulting in absorption of
 

The state which corresponds to a plasma

most of the applied microwave power. 


(cut-off or critical density) is dynamically unstable and the
 density of N 

res -- - ­

plasma cannot be resotiantly sustained'at this value at a steady 
state. 

With enough incident microwave power and appropriate tuning of the 

cavity, the critical density of the plasma can be increased by about a 

factor of ten.48'49'5 7  The reason for being able to sustain the plasma 

above the critical density can be explained by Fig. [23] in which we plot 

power in relative units versus the plasma density. A family of curves is 

presented corresponding to different- values of incident power. Also shown in 

Fig. [23] is a power loss line which represents the power lost in the plasma
 

due to-inelastic ionization, excitation,and diffusion losses to the walls.
 

For an incident power of P2, there are two points where the power absorbed by
 

the plasma is equal to the power lost by the plasma. In resonantly sustained
 

plasma, the power absorbed is indeed equal to the power loss in the plasma.
 

Thus with steady operation of incident power P2' there are two equilibrium
 

states A and B as shown in Fig.[23 ]. State B is in a stable equilibrium while
 

state A is an unstable equilibrium because at point B, any reduction in the
 

plasma density has the tendency to increase the power absorbed by the plasma,
 

which in turn causes an increase in ionization, hence increases the plasma
 

density. On the other hand an increase in plasma density at point B has the
 

tendency to reduce the power absorbed by the plasma, which in turn causes a
 

Hence State B is in stable equilibrium.reduction in the plasma density. 


For the same reason, point A is unstable because an increase of plasma
 

density will increase the absorbed power, which will eventually bring the
 

plasma to point B. But a decrease of the plasma density it point A will
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extinguish the plasma. Sc 
 point A is unstable. The-resonantly sustained plasma
 

density must be above Nres 
where the plasma begins to be opaque to the applied
 

field. 
That is why it is sometimes difficult to resonantly sustain a dense
 

plasma.
 

The interaction of microwave power with plasmas is a complex phenomenon
 

which-strongly depends on the geometry of the apparatus and the frequency
 

and power of the applied microwave field.;52-59
 

2. Experimental Setup
 

a. The Microwave Cavity
 

A reentrant type cavity is used as the resonant microwave cavity-because
 

of its easily accessible size in our frequency range, its tuning capability
 

and the adjustability of the strength of the electric field in the gap inside
 

the cavity. The reentrant cavity is composed of an inner and an outer
 

conductor. 
A sliding short is installed between the conductors to adjust
 

the length of the cavity. A hole -of 1-7/8" in diameter is made on one of
 

the end walls of the cavity so that the glass tube housing the converter can
 

be inserted inside the inner hollow conductor tube. The location of the 

interelectrode space is the same as 
the gap between the inner conductor and
 

the end plate as shown in Fig. [24].
 

By moving in and out the inner conductor, the gap distance ,can be
 

adjusted contributing to better tuning. 
The inside diameter of the outer
 

conductor and the butside diameter of the inner conductor are 3" and 1-7/8"
 

respectively. The characteristic impedance-of the cavity is determined by
 

Z., where
 

4 =1 (44) 
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and Pr is the. relative permeability and er is the relative dielectric
 

constant. In this case, both pr and Er are both equal to 1, while 2a and 2b
 

are the O.D. of the inner conductor and the' ID. of the outer conductor
 

which areequal to 1-7/8" and 3" respectively. By Eq. [42] the characteristic
 

impedance of this cavity Z0 is found to be 30 Q. The approximate cutoff
 

wavelength for the first higher order mode wave, besides the principal TEM
 

mode wave, which can exist in the cavity is, given-by
 

So if the applied frequency is below the cutoff frequency, only the
 

principal TEM waves will exist inside the cavity. For TEM waves,
 

and for the wave propagation in the +Z direction
 

(47)
 

whereas for propagation in the -Z direction
 

(48)
 

At low frequencies, the resonant circuit is represented by an inductor
 

and a capacitor combination either-in series or in parallel. Resonance
 

occurs when there are equal.average amounts of electric and magnetic fields
 

around the inductor and the electric field between the capacitor plates. At
 

microwave frequencies, the LC circuit is replaced by a closed conducting­

enclosure or cavity. The electric and magnetic energy are stored in the
 

field within the cavity at an infinite number of discrete frequencies, the
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resonant frequencies. There are equal average amounts of electric and
 

magnetic energy stored in the cavity volume. Thus, in calculating the resonant
 

frequency of the cavity, the combined capacitive susceptance due to the
 

.proximityof the metallic wall and that due to energy storage in the inner
 

and outer conductors, and also the gap capacitance should be taken into
 

account. On the ,other hand" the ,susceptancemust be equal 'inmagnitude to the 

short circuited inductive susceptance offered by the transmission line to the 

cavity. 

The combined capacitance of the cavity, C, is the sum of the­

gap capacitance, Co, and the equivalent,capacitance of the, cavity,,,C. The
 

equivalent capacitance of the gap is obtained by
 

CIO (IL&,/ + 4 ~ J 4 a ,)(49) 

where Y is a capacitance reduction factor for the open hole on the end
 

plate as. compared to the-geometry without the hole. The equivalent capacitance
 

of the cavity is given by
 

24 

So the total combined capacitance is
 

-1 47 

The inductance of the cavity is given by L, where
 

As a result, the resonant frequency can be computed by equating the
 

total reactance of the cavity to zero and the resonant frequency is
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{ve~=Z7 JEW(53) 

At each fixed gap distance, the resonant frequencies of the
 

cavity in the range of 1-2 G0z can be measured experimentally by adjusting
 

the-cavity length. We have also investigated the resonant frequencies of
 

the cavity with different gap distances, starting from 0.05" to 0.45? at
 

intervals of 0.05". The measurements agree very well with the theoretical
 

predictions of equations 49, 50 and 51.
 

b. 	The Vacuum System
 

The demountable cesium thermionic diode and the vacuum components
 

used in this experiment are shown in Fig. [24]. The cesium thermionic diode
 

is composed of one inch diameter stainless steel disc, the collector,
 

separated by one inch from a swirl tungsten emitter inside a pyrex glass
 

tube housing. The glass tube is connected to a cesium reservoir. The
 

glass tube is connected to a bakable valve through a tee. The bakable valve
 

connects to the pumping system which consists of a mechanical pump, a diffusion
 

,pump,an ion pump, and a pressure gauge. The system is pumped down to a
 

pressure of 10 microns by the mechanical pump, then down to a pressure of
 

-
10 4 torr by the diffusion pump. An ion pump is used for the final stage of
 

pumping. Both the diode and the cesium reservoir are baked at 250%C and the
 

tungsten filament is outgassed for more than 24 hours while pumping until a
 

residual gas pressure of the order of 10-8 torr is reached. Then the bakable
 

valve is closed and the cesium reservoir connected. The microwave cavity
 

and the diode are heated in an oven which is made of two double walled two
 

inche thick asbestos insulating blocks. The cesium reservoir is also
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heated in an oven located just below the oven of the converter diode.
 

Temperature controllers 
are used to keep the ovens at the desired temperature. 

Chromel-Alumel thermocouples are placed at various positions for temperature 

-measurements. 

c., TheaMicrowave Setup 

A-sketch of thA microwave system is shown in Figs. [251 and [26]. The 

microwave signal is generated'by a 1 - 2 GHz sweep oscill"ator,. This oscil­

lator produces a quite stable frequency signal easily adjustable in the
 

sweep range at a power of about 20 mw. This microwave signal is amplified
 

bya travelling wave tube amplifier (TWT). The amplified output power ranges
 

from 0 -.20 Watts.
 

A circulator is installed between the TWT and the rest of the system
 

to protect the TWT's output helix from damage by the reflected microwave
 

power. The third port of the circulator is connected to a matched load
 

which can absorb up to 150 W of reflected power.
 

A pair of directional couplers are used to measure the incident
 

and reflected power. The reflected signal power level is measured by a
 

power meter and is displayed on an oscilloscope. It serves to indicate
 

the resonance condition. A section of coaxial slotted line is used to
 

measure the input impedance of the cavity. 
A reference plane is established
 

on the slotted line for a short circuit load. The phase of the cavity
 

impedance is measured by the difference of the null and the reference plane
 

in the SWR pattern which also serves as an indication for a resonant
 

condition of the plasma - cavity system.
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After going through the tuner, which adjusts the matching between
 

the microwave source and the cavity, the signal is sent into the cavity
 

through a 0.141" O.D. semi-rigid high temperature (250'C) low attenuation
 

coaxial cable to excite the magnetic field inside the cavity. A loop con­

figuration excites the magnetic field at the TEM wave. Furthermore, the
 

loop is placed in a location wheresthe concentration of magnetic field
 

lines threading the loop is highest, which is near the shorting plate since
 

the magnetic fields are directly proportional to rf current in the walls
 

and the strongest current lines in a transmission line is at the short.
 

d. The Electrical Circuit
 

The electrical circuit configurations used to discharge the plasma
 

are shown in Fig. [26]. Both D.C. and rectified A.C. signals are used to
 

ignite or discharge the cesium plasma. A variable non-inductive resistor
 

is connected in series with the power supply as a ballast resistor to
 

limit the diode current.
 

15 
D.C. power supply of 0-60 V and 0 - amp. is used to discharge
 

the plasma so that its I-V characteristics can be plotted on a X-Y recorder.
 

Besides using D.C., a 220 V A.C. power supply is stepped down to 120 V A.C.
 

through an isolation transformer to discharge the plasma. With A.C.
 

discharge, the I-V characteristics can be displayed on an oscilloscope.
 

In the A.C. discharge circuit, a rectifying diode is used in series with
 

the A.C. power supply so that most .of the negative voltage cycle is rectified.
 

3. The Experimental Results
 

The performance of a thermionic converter or diode can be improved
 

substantially by lowering the plasma arc drop. The quality of the performance
 

of a converter diode can be deduced from its I-V characteristic curve. The
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transition point (the "knee' of an I-V characteristic curve of a thermionic
 

diode is also the point of maximum performance of the diode at a certain
 

emitter temperature_. The arc drop voltage of the diode measured at the
 

transition is the potential drop across-the interelectrode space required
 

to produce just enough ions to balance the plasma losses. In order to
 

maintain the plasma density level, the electron temperature of the plasma
 

must be sufficiently high to produce ions as rapidly as they are lost by
 

the diffusion to the electrodes and by volume recombination. So the
 

redcction of the arc drop -nltage of the diode when the plasma is sustained
 

by microwave power can be measured by the shift of the output voltage
 

at the transition point when we compare the I-V curves with or without
 

applied microwave power.
 

The experiments were carried out under the following conditions:
 

The cesium reservoir temperature ranges from 150'C to 200'C which
 

corresponds to a relatively low cesium pressure from 0.01 to
 

0.1 torr.
 

The emitter temperature is about-1300K, which implies an emitter
 

2
 
current density of the order of or less than'1 amp/cm . The microwave 

signal at the output of the TWT amplifier ranges in power between 

o and 20 watts at a rather low microwave frequency region4i.e., 1-2 GHz.
 

It is immediately evident that the thermionic diode is not operated at
 

the optimum performance region or in the positive power quadrant.
 

We measured the I-V characteristics on the oscilloscope or the X-Y
 

recorder D.C. and AC. discharges of the cesium plasma in the converter
 

diode. Emitter temperature at TE=10250K and TR=4230K, the D.C.power supply
 

ignites the cesium plasma at 3.6 V as shown in Fig. [27]. In the same
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figure, with additional microwave heating, the plasma can be ignited at 1.8 V.
 

At the same time, the diode voltage at the transition point is decreased by
 

1 V. At the same hesium pressure and TE at i500K, the I-V curve with and
 

without Microwave is shown in Fig. [28]. Three typical I-V characteristic
 

curves measured with and without applied microwave power are shown in
 

figures [29], [30] and [311.
 

It is found that with microwave heating, the I-V curve of the diode
 

shifts from the negative power quadrant into positive power quadrant. The
 

ignition voltage of the plasma and the arc drop are shown in Table 1 with
 

TR at 473PK and TE from 9350K to 1300'K.
 

A: interesting method of evaluating the performance of the 

thermionic converter is provided by Lam who summarizes the plasma arc drop 

in terms of a-single parameter. This parameter is the normalized plasma
 

resistance R which, according to Lam's theory, has a minimum value of
 

4 or 5 as long as there exists an emitter motive peak.
3
 

The converter arc drop is related to the normalized plasma resistance
 

R by the .equation
 

.(54)-

If the emitter motive peak is suppressed, JE = R Without external heating, 

R cannot be determined experimentally because of the simultaneous changing 

of JE and T below the transition point of the I-V curve, where the 

emitter motive exists. This can be explained by Fig. [32] which shows 

the potential diagram between the electrodes at four points on the 

I-V curve. At point 1, the plasma is unignited and the current density 

is very low. At point 2, the plasma.is in negative resistance region
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where the plasma is not completely ignited and the emitter motive peak still
 

exists. At either-point i-or 2, the emitter net current density J cannot
 
E
 

be determined because J is a function of T and which are both varying 

-during the transition from point 1-to point3. It is only when point 3 

is reached which is the transition point or the "kinee" of the I-V curve, 

that the plasma is completely ignitedand the emitter motive peak disappears, 

and JE = JR becomes a constant. At point 4 the plasma is in a saturation 

region. In Fig. [35] shows that the I-V curve and the potential diagrams 

of the converter diode with microwave heating. The "knee" of the I-V
 

curve disappears and the plasma is sustained at high current density when
 

both A.C. and microwave power are applied while at low current density
 

the plasma is sustained only by microwave power. Because of the disappearance
 

of the emitter motive peak, there is no sudden jump of diode current and
 

=
JR JE is constant can be assumed. As a result, Eq. (59) can be used
 

to relate j J/JR) and Vd at a certain value of R and T. The -normalized 

I-V characteristics of the diode with external heating are plotted as j 

versus Vd. The best fit of these experimental I-V curves with respect to 

the ,parameters-R and T into-the curves provided by Lam's theory can provide 

us with the best values of Rand r. A family of Lam's plot at T = 5 and a 

family of I-V curves with different microwave input power are shown in 

Fig. [34] and Fig. [35] respectively. The normalized plasma resistance, R, 

and normalized electron temperature, T, are tabulated in Table 3 with 

different emitter temperatures and at TR= 473 K. It is shown that at 

TE = 935'K and nR/np=0.45, R is equal to 10 and the best value of T 

is- also 10. As the ratio of nR/n increases to 13.4 at TE=10550 K, R 

increases to 25 and T decreases to 5 which is almost constant until 
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473'KTR 


TEK) 


935 


965 


995 


1025 


.1055 


1085 


1115 


1180 


1210 


1240 


1270 


1300 


R 

10 


10 


15 


20 


25 


25 


25 


25 


30 


30 


50 


50 


Nrsi 10 " - 0,1 0 

2.7 1.22' 

2.7 6.30 

2.7 18.10O 


2.7 32.40 


2.7 36.20 


2.7 33.90 


2.7 31.70 


2.7 26.3 


2.7 20.29 


2.7 19.49 


2.7 19.20 


it
 

2.7 19.00 


TABLE 3
 

PLASMA PARAMETERS
 

R 
res
 

0'.4 

2.33 

6.67 


12.00 


13.40 


12.56 


11.74 


9.7 


7.51 


7.22 


7.15 


.7.04 


10
 

8
 

7
 

5
 

5
 

5
 

5
 

5
 

5
 

4
 

3
 

3
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T =ll8QaK. From T =12100K to 1300'K, R is greater than 30 and T is less
 

than 4 even though the ratio, r/np decreases. The table shows that as T
 

decreases, the plasma resistance increases, which is an indication that in
 

order to reduce plasma resistance or arc drop, higher electron temperature
 

is required.
 

Finally, an extended plot of the I-V characteristics of the diode
 

with and without microwave heating is shown in Fig. [33] at TE= 9350 K to
 

demonstrate the improved performance of the diode with external microwave
 

heating.
 

4. Discussion
 

It is believed that microwave power shows great promise as a source of
 

energy to sustain the cesium plasma in a thermionic converter. At the l6wer
 

operating temperature of 1400"K the emitter in the advanced converter can
 

no longer supply sufficient ionization levels. An external source of ion
 

generation is needed which does not interfere with the emitter and
 

collector electrodes. Externally supplied microwave power may prove
 

to be the best agent to perform the task. It is attractive in many
 

ways. There is considerable flexibility in that we may adjust both the
 

power and the frequency of the applied microwave power to achieve the
 

desired plasma condition. In supplying microwave energy we do not
 

interfere with the interelectrode spacing by the insertion of extraneous
 

electrodes. We may operate in the continuous mode in contrast to
 

pulsed systems which would not be available for power generation during
 

the pulse on condition. Furthermore the geometrical dimension of the
 

emitter collector distance envisioned is the correct order of magnitude to
 

allow support of the plasma by microwave fields in a resonant mode.
 

The energy expenditure of microwave power at a resonant plasma system
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is expected to be smaller in comparison to-alternative energy sources.
 

We hope to proceed to an accurate analysis of the microwave power
 

consumption needed to support a required level of plasma density in the
 

near future. The technology of microwave power generation and
 

transmission is well advanced with many off-the-shelf items available
 

to utilize in our systems.
 

We have seen in our analysis of the experimental data a trend that
 

tends to support Lam's theoretical treatment clearly. More work is
 

needed in this area to-provide a comprehensive understanding of the
 

plasma in the thermionic converter. The simplicity of a microwave supported
 

plasma in an optimum diode could allow for easily interpreted data from
 

which conclusions could be drawn about the proper plasma density level for
 

highest overall efficiency. We thus believe that microwave power
 

sustenance of a thermionic plasma in a resonant configuration is indeed
 

a very attractive choice.
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