475 research outputs found

    Short-term hot-hardness characteristics of five case hardened steels

    Get PDF
    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C

    Fatigue lives at 600 F of 120 millimeter bore ball bearings of AISI M-50, AISI M-1, and WB-49 steels

    Get PDF
    High temperature fatigue tests of steel ball bearings with synthetic paraffinic oil lubricant in low oxygen environmen

    Long life, high speed, thrust-load ball bearings

    Get PDF
    Long-term bearing operation at three million DN can be achieved with high degree of reliability using full combination of sophisticated but currently available state-of-the-art bearing materials and designs, lubricants, and lubricating techniques

    Operating characteristics of 120-millimeter-bore ball bearings at 3 million DN

    Get PDF
    A parametric study was performed with split inner-race 120-mm-bore angular-contact ball bearings at a speed of 25,000 rpm (3 million DN) at initial contact angles of 20 deg and 24 deg. Provisions were made for outer- and inner-race cooling and for injection of lubricant into the bearing through a number of radial holes in the split inner-race of the bearing. Oil flow and coolant rate to the bearing was controlled and varied for a total up to approximately 3.2 gal/min. Bearing temperature was found to decrease as the total lubricant flow to the bearing increased. However, at intermediate flow rates temperature began to increase with increasing flow. Power consumption increased with increasing flow rate. Bearing operating temperature, differences in temperatures between the inner and outer races, and bearing power consumption can be tuned to any desirable operating requirement. Cage speed increased by not more than 2 percent with increasing oil flow to the inner race

    Effect of speed and load on ultra-high-speed ball bearings

    Get PDF
    A study was undertaken to determine the effects of speed and load on the operation of 120-mm bore angular-contact ball bearings at speeds to 25,000 rpm and thrust loads to 22,240 newtons (5000 lb). Bearing temperature and power consumption increased with increases in load and/or speed. The effect of load on temperature and power consumption was small relative to the speed effect. Actual measurements of bearing operating contact angle were in excellent agreement with theoretical predictions. Skidding occurred in the bearing in various amounts, generally increasing with speed at given load. The highest amount of skidding, 6 percent, occurred at the highest speed, 25,000 rpm. No visible damage to the bearing surfaces occurred due to the skidding

    Endurance and failure characteristics of main-shaft jet engine bearings at 3x10 to the 6th power DN

    Get PDF
    Groups of thirty 120-mm bore angular contact ball bearings were endurance tested at a speed of 12,000 and 25,000 rpm and a thrust load of 66 721 N. The bearings were manufactured from a single heat of VIM-VAR AISI M-50 steel. At 1.44X1 million and 3.0x1 million DN, 84 483 and 74 800 bearing test hours were accumulated, respectively. Test results were compared with similar bearings made from CVM AISI M-50 steel run under the same conditions. Bearing lives at speeds of 3x1 million DN with the VIM-VAR AISI M-50 steel were nearly equivalent to those obtained at lower speeds. A combined processing and material life factor of 44 was found for VIM-VAR AISI M-50 steel. Continuous running after a spall has occurred at 3.0x1 million DN can result in a destructive fracture of the bearing inner race

    Operating limitations of high speed jet lubricated ball bearings

    Get PDF
    A parametric study was performed with 120-mm bore angular-contact ball bearings having a nominal contact angle of 20 degrees. The bearings had either an inner- or an outer-race land riding cage, and lubrication was by recirculating oil jets which had either a single or dual orifice. Thrust load, speed, and lubricant flow rate were varied. Test results were compared with those previously reported and obtained from bearings of the same design which were under-race lubricated but run under the same conditions. Jet lubricated ball bearings were limited to speeds less than 2,500,000 DN, and bearings having inner-race land riding cages produced lower temperatures than bearings with outer-race land riding cages. For a given lubricant flow rate dual orifice jets produced lower bearing temperatures than single orifice jets, but under-race lubrication produced lower bearing temperatures under all conditions of operation with no apparent bearing speed limitation

    A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears

    Get PDF
    Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears

    Fatigue life of 120 mm bore ball bearings at 600 deg F with fluorocarbon, polyphenyl ether, and synthetic paraffinic base lubricants

    Get PDF
    High temperature tests to determine fatigue life of 120mm bore ball bearings with fluorocarbon, polyphenyl ether, and synthetic base paraffin base lubricant

    Bearing torque and fatigue life studies with several lubricants for use in the range 500 deg F to 700 deg F

    Get PDF
    Rolling contact bearing torque measurements and fatigue life tests of high temperature lubricant
    corecore