20 research outputs found

    p68/DdX5 supports Ξ²-Catenin & RNAP II during androgen receptor mediated transcription in prostate cancer

    Get PDF
    The DEAD box RNA helicase p68 (Ddx5) is an important androgen receptor (AR) transcriptional co-activator in prostate cancer (PCa) and is over-expressed in late stage disease. Ξ²-Catenin is a multifunctional protein with important structural and signalling functions which is up-regulated in PCa and similar to p68, interacts with the AR to co-activate expression of AR target genes. Importantly, p68 forms complexes with nuclear Ξ²-Catenin and promotes gene transcription in colon cancer indicating a functional interplay between these two proteins in cancer progression. In this study, we explore the relationship of p68 and Ξ²-Catenin in PCa to assess their potential co-operation in AR-dependent gene expression, which may be of importance in the development of castrate resistant prostate cancer (CRPCa). We use immunoprecipitation to demonstrate a novel interaction between p68 and Ξ²-Catenin in the nucleus of PCa cells, which is androgen dependent in LNCaP cells but androgen independent in a hormone refractory derivative of the same cell line (representative of the CRPCa disease type). Enhanced AR activity is seen in androgen-dependent luciferase reporter assays upon transient co-transfection of p68 and Ξ²-Catenin as an additive effect, and p68-depleted Chromatin-Immunoprecipitation (ChIP) showed a decrease in the recruitment of the AR and Ξ²-Catenin to androgen responsive promoter regions. In addition, we found p68 immunoprecipitated with the processive and non-processive form of RNA polymerase II (RNAP II) and show p68 recruited to elongating regions of the AR mediated PSA gene, suggesting a role for p68 in facilitating RNAP II transcription of AR mediated genes. These results suggest p68 is important in facilitating Ξ²-Catenin and AR transcriptional activity in PCa cells

    The androgen receptor can signal through Wnt/Ξ²-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A crucial event in Prostate Cancer progression is the conversion from a hormone-sensitive to a hormone-refractory disease state. Correlating with this transition, androgen receptor (AR) amplification and mutations are often observed in patients failing hormonal ablation therapies. Ξ²-Catenin, an essential component of the canonical Wnt signaling pathway, was shown to be a coactivator of the AR signaling in the presence of androgens. However, it is not yet clear what effect the increased levels of the AR could have on the Wnt signaling pathway in these hormone-refractory prostate cells.</p> <p>Results</p> <p>Transient transfections of several human prostate cancer cell lines with the AR and multiple components of the Wnt signaling pathway demonstrate that the AR overexpression can potentiate the transcriptional activities of Wnt/Ξ²-Catenin signaling. In addition, the simultaneous activation of the Wnt signaling pathway and overexpression of the AR promote prostate cancer cell growth and transformation at castration levels of androgens. Interestingly, the presence of physiological levels of androgen or other AR agonists inhibits these effects. These observations are consistent with the nuclear co-localization of the AR and Ξ²-Catenin shown by immunohistochemistry in human prostate cancer samples. Furthermore, chromatin immunoprecipitation assays showed that Wnt3A can recruit the AR to the promoter regions of Myc and Cyclin D1, which are well-characterized downstream targets of the Wnt signalling pathway. The same assays demonstrated that the AR and Ξ²-Catenin can be recruited to the promoter and enhancer regions of a known AR target gene PSA upon Wnt signaling. These results suggest that the AR is promoting Wnt signaling at the chromatin level.</p> <p>Conclusion</p> <p>Our findings suggest that the AR signaling through the Wnt/Ξ²-Catenin pathway should be added to the well established functional interactions between both pathways. Moreover, our data show that via this interaction the AR could promote prostate cell malignancy in a ligand-independent manner.</p

    Bladder dysfunction in Down’s syndrome

    No full text
    corecore