305 research outputs found
Classical and Quantum Behavior in Mean-Field Glassy Systems
In this talk I review some recent developments which shed light on the main
connections between structural glasses and mean-field spin glass models with a
discontinuous transition. I also discuss the role of quantum fluctuations on
the dynamical instability found in mean-field spin glasses with a discontinuous
transition. In mean-field models with pairwise interactions in a transverse
field it is shown, in the framework of the static approximation, that such
instability is suppressed at zero temperature.Comment: 9 Pages (including 5 Figures), Revtex, Proceedings of the XIV Sitges
Conference, June 1996 (Barcelona) Spai
Observation of Dirac plasmons in a topological insulator
Plasmons are the quantized collective oscillations of electrons in metals and
doped semiconductors. The plasmons of ordinary, massive electrons are since a
long time basic ingredients of research in plasmonics and in optical
metamaterials. Plasmons of massless Dirac electrons were instead recently
observed in a purely two-dimensional electron system (2DEG)like graphene, and
their properties are promising for new tunable plasmonic metamaterials in the
terahertz and the mid-infrared frequency range. Dirac quasi-particles are known
to exist also in the two-dimensional electron gas which forms at the surface of
topological insulators due to a strong spin-orbit interaction. Therefore,one
may look for their collective excitations by using infrared spectroscopy. Here
we first report evidence of plasmonic excitations in a topological insulator
(Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W
and period 2W to select suitable values of the plasmon wavevector k. Their
lineshape was found to be extremely robust vs. temperature between 6 and 300 K,
as one may expect for the excitations of topological carriers. Moreover, by
changing W and measuring in the terahertz range the plasmonic frequency vP vs.
k we could show, without using any fitting parameter, that the dispersion curve
is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013
Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram
This review will be concerned with our knowledge of extended matter under the
governance of strong interaction, in short: QCD matter. Strictly speaking, the
hadrons are representing the first layer of extended QCD architecture. In fact
we encounter the characteristic phenomena of confinement as distances grow to
the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of
the elementary QCD Lagrangian via non-perturbative generation of "massive"
quark and gluon condensates, that replace the bare QCD vacuum. However, given
such first experiences of transition from short range perturbative QCD
phenomena (jet physics etc.), toward extended, non perturbative QCD hadron
structure, we shall proceed here to systems with dimensions far exceeding the
force range: matter in the interior of heavy nuclei, or in neutron stars, and
primordial matter in the cosmological era from electro-weak decoupling (10^-12
s) to hadron formation (0.5 10^-5 s). This primordial matter, prior to
hadronization, should be deconfined in its QCD sector, forming a plasma (i.e.
color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).Comment: 146 pages, 83 figure
- …
