44 research outputs found

    Influence of dispersion state of initial AlN powder on the hydrolysis process in air environment

    Get PDF
    The research results of the hydrolysis processes of aluminum nitride powders received by the SVS method in dependence on humidity of the storage environment, and grain size distribution are presented in this work. Oxidation kinetics was estimated by means of X- ray Diffraction (XRD) and scanning electron microscopy (SEM). The induction period of the hydrolysis process for various powders, its dependence on powder dispersion and thickness of the oxide layer on surface of particles have been defined

    Influence of dispersion state of initial AlN powder on the hydrolysis process in air environment

    Get PDF
    The research results of the hydrolysis processes of aluminum nitride powders received by the SVS method in dependence on humidity of the storage environment, and grain size distribution are presented in this work. Oxidation kinetics was estimated by means of X- ray Diffraction (XRD) and scanning electron microscopy (SEM). The induction period of the hydrolysis process for various powders, its dependence on powder dispersion and thickness of the oxide layer on surface of particles have been defined

    The highly accurate anteriolateral portal for injecting the knee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extended knee lateral midpatellar portal for intraarticular injection of the knee is accurate but is not practical for all patients. We hypothesized that a modified anteriolateral portal where the synovial membrane of the medial femoral condyle is the target would be highly accurate and effective for intraarticular injection of the knee.</p> <p>Methods</p> <p>83 subjects with non-effusive osteoarthritis of the knee were randomized to intraarticular injection using the modified anteriolateral bent knee versus the standard lateral midpatellar portal. After hydrodissection of the synovial membrane with lidocaine using a mechanical syringe (reciprocating procedure device), 80 mg of triamcinolone acetonide were injected into the knee with a 2.0-in (5.1-cm) 21-gauge needle. Baseline pain, procedural pain, and pain at outcome (2 weeks and 6 months) were determined with the 10 cm Visual Analogue Pain Score (VAS). The accuracy of needle placement was determined by sonographic imaging.</p> <p>Results</p> <p>The lateral midpatellar and anteriolateral portals resulted in equivalent clinical outcomes including procedural pain (VAS midpatellar: 4.6 ± 3.1 cm; anteriolateral: 4.8 ± 3.2 cm; p = 0.77), pain at outcome (VAS midpatellar: 2.6 ± 2.8 cm; anteriolateral: 1.7 ± 2.3 cm; p = 0.11), responders (midpatellar: 45%; anteriolateral: 56%; p = 0.33), duration of therapeutic effect (midpatellar: 3.9 ± 2.4 months; anteriolateral: 4.1 ± 2.2 months; p = 0.69), and time to next procedure (midpatellar: 7.3 ± 3.3 months; anteriolateral: 7.7 ± 3.7 months; p = 0.71). The anteriolateral portal was 97% accurate by real-time ultrasound imaging.</p> <p>Conclusion</p> <p>The modified anteriolateral bent knee portal is an effective, accurate, and equivalent alternative to the standard lateral midpatellar portal for intraarticular injection of the knee.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00651625">NCT00651625</a></p

    High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation

    Get PDF
    Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da).In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation.We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13

    Session 17 Ecophysiology

    Get PDF
    n/

    Features of the Bioconversion of Pentacyclic Triterpenoid Oleanolic Acid Using Rhodococcus Actinobacteria

    Full text link
    The ability of actinobacteria of the genus Rhodococcus to transform oleanolic acid (OA), a plant pentacyclic triterpenoid, was shown for the first time using bioresources of the Regional Specialized Collection of AlkanotrophicMicroorganisms (IEGM; WDCM #768;www.iegmcol.ru). The most promising strains (R.opacus IEGM 488 and R.rhodochrousIEGM 285) were selected, and these catalyzed80% bioconversion of OA (0.5 g/L) in the presence of n-hexadecane (0.1% v/v) for seven days. The process of OA bioconversion was accompanied by a gradual decrease in the culture medium pH. Adaptive responses of bacterial cells to the OA effects included the formation of compact cellular aggregates, a marked change in the surface-to-volume ratio of cells, and a significant increase in the Zeta potential values. The results demonstrated that the process of OA bioconversion was catalyzed by membrane-bound enzyme complexes. Participation of cytochrome P450-dependent monooxygenases in the oxidation of the OA moleculewas confirmedusing specific inhibitors. The obtained data expand our knowledge on the catalytic activity of actinobacteria of the genus Rhodococcus and their possible use as biocatalysts for the bioconversion of complex hydrophobic compounds. The results can also be used inthe searchfor promising OA derivatives to be used in the synthesis of biologically active agents. Keywords: bioconversion, oleanolic acid, Rhodococcus, biologically active compound
    corecore