1,160 research outputs found
Manipulating biphotonic qutrits
Quantum information carriers with higher dimension than the canonical qubit
offer significant advantages. However, manipulating such systems is extremely
difficult. We show how measurement induced non-linearities can be employed to
dramatically extend the range of possible transforms on biphotonic qutrits; the
three level quantum systems formed by the polarisation of two photons in the
same spatio-temporal mode. We fully characterise the biphoton-photon
entanglement that underpins our technique, thereby realising the first instance
of qubit-qutrit entanglement. We discuss an extension of our technique to
generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of
quantum information.Comment: 4 pages, 4 figure
Demonstration of a simple entangling optical gate and its use in Bell-state analysis
We demonstrate a new architecture for an optical entangling gate that is
significantly simpler than previous realisations, using partially-polarising
beamsplitters so that only a single optical mode-matching condition is
required. We demonstrate operation of a controlled-Z gate in both
continuous-wave and pulsed regimes of operation, fully characterising it in
each case using quantum process tomography. We also demonstrate a
fully-resolving, nondeterministic optical Bell-state analyser based on this
controlled-Z gate. This new architecture is ideally suited to guided optics
implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures
(low res), some other minor changes. Accepted for publication in PR
Experimental demonstration of Shor's algorithm with quantum entanglement
Shor's powerful quantum algorithm for factoring represents a major challenge
in quantum computation and its full realization will have a large impact on
modern cryptography. Here we implement a compiled version of Shor's algorithm
in a photonic system using single photons and employing the non-linearity
induced by measurement. For the first time we demonstrate the core processes,
coherent control, and resultant entangled states that are required in a
full-scale implementation of Shor's algorithm. Demonstration of these processes
is a necessary step on the path towards a full implementation of Shor's
algorithm and scalable quantum computing. Our results highlight that the
performance of a quantum algorithm is not the same as performance of the
underlying quantum circuit, and stress the importance of developing techniques
for characterising quantum algorithms.Comment: 4 pages, 5 figures + half-page additional online materia
Dirac cones in two-dimensional borane
We introduce two-dimensional borane, a single-layered material of BH
stoichiometry, with promising electronic properties. We show that, according to
Density Functional Theory calculations, two-dimensional borane is semimetallic,
with two symmetry-related Dirac cones meeting right at the Fermi energy .
The curvature of the cones is lower than in graphene, thus closer to the ideal
linear dispersion. Its structure, formed by a puckered trigonal boron network
with hydrogen atoms connected to each boron atom, can be understood as
distorted, hydrogenated borophene (Science \textbf{350}, 1513 (2015)). Chemical
bonding analysis reveals the boron layer in the network being bound by
delocalized four-center two-electron bonds. Finally, we suggest
high-pressure could be a feasible route to synthesise two-dimensional borane.Comment: 5 pages, 3 figures, 1 tabl
A Randomized Controlled Trial Translating the Diabetes Prevention Program to a University Worksite, Ohio, 2012-2014
INTRODUCTION: Working adults spend much time at the workplace, an ideal setting for wellness programs targeting weight loss and disease prevention. Few randomized trials have evaluated the efficacy of worksite diabetes prevention programs. This study evaluated the efficacy of a worksite lifestyle intervention on metabolic and behavioral risk factors compared with usual care.
METHODS: A pretest-posttest control group design with 3-month follow-up was used. Participants with prediabetes were recruited from a university worksite and randomized to receive a 16-week lifestyle intervention (n = 35) or usual care (n = 34). Participants were evaluated at baseline, postintervention, and 3-month follow-up. Dietary intake was measured by a food frequency questionnaire and level of physical activity by accelerometers. Repeated measures analysis of variance compared the change in outcomes between and within groups.
RESULTS: Mean (standard error [SE]) weight loss was greater in the intervention (-5.5% [0.6%]) than in the control (-0.4% [0.5%]) group (P < .001) postintervention and was sustained at 3-month follow-up (P < .001). Mean (SE) reductions in fasting glucose were greater in the intervention (-8.6 [1.6] mg/dL) than in the control (-3.7 [1.6] mg/dL) group (P = .02) postintervention; both groups had significant glucose reductions at 3-month follow-up (P < .001). In the intervention group, the intake of total energy and the percentage of energy from all fats, saturated fats, and trans fats decreased, and the intake of dietary fiber increased (all P < .01) postintervention.
CONCLUSION: The worksite intervention improved metabolic and behavioral risk factors among employees with prediabetes. The long-term impact on diabetes prevention and program sustainability warrant further investigation
Second Cluster Integral and Excluded Volume Effects for the Pion Gas
The quantum mechanical formula for Mayer's second cluster integral for the
gas of relativistic particles with hard-core interaction is derived. The proper
pion volume calculated with quantum mechanical formula is found to be an order
of magnitude larger than its classical evaluation.
The second cluster integral for the pion gas is calculated in quantum
mechanical approach with account for both attractive and hard-core repulsive
interactions. It is shown that, in the second cluster approximation, the
repulsive pion-pion-interactions as well as the finite width of resonances give
important but almost canceling contributions. In contrast, an appreciable
deviation from the ideal gas of pions and pion resonances is observed beyond
the second cluster approximation in the framework of the Van der Waals
excluded-volume model.Comment: 29 pages, Latex, 9 PS-figure
Charged Pion Production in 2 to 8 AGeV Central Au+Au Collisions
Momentum spectra of charged pions over nearly full rapidity coverage from
target to beam rapidity have been measured in the 0-5% most central Au+Au
collisions in the beam energy range from 2 to 8 AGeV by the E895 Experiment.
Using a thermal parameterization to fit the transverse mass spectra, rapidity
density distributions are extracted. The observed spectra are compared with
predictions from the RQMD v2.3 cascade model and also to a thermal model
including longitudinal flow. The total 4 yields of the charged pions are
used to infer an initial state entropy produced in the collisions.Comment: 13 pgs, 19 figs, accepted by Phys. Rev. C. Data tables available at
http://nuclear.ucdavis.edu/~e895/published_spectra.htm
Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV
Chemical and thermal freeze-out of the hadronic fireball formed in symmetric
collisions of light, intermediate-mass, and heavy nuclei at beam energies
between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated,
isospin-symmetric ideal hadron gas with grand-canonical baryon-number
conservation. For each collision system the baryochemical potential mu_B and
the chemical freeze-out temperature T_c are deduced from the inclusive neutral
pion and eta yields which are augmented by interpolated data on deuteron
production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV,
while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with
system size, whereas T_c remains constant. The centrality dependence of the
freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV.
For the highest beam energies the fraction of nucleons excited to resonance
states reaches freeze-out values of nearly 15 %, suggesting resonance densities
close to normal nuclear density at maximum compression. In contrast to the
particle yields, which convey the status at chemical freeze-out, the shapes of
the related transverse-mass spectra do reflect thermal freeze-out. The observed
thermal freeze-out temperatures T_th are equal to or slightly lower than T_c,
indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure
Influence of Impact Parameter on Thermal Description of Relativistic Heavy Ion Collisions at GSI/SIS
Attention is drawn to the role played by the size of the system in the
thermodynamic analysis of particle yields in relativistic heavy ion collisions
at SIS energies. This manifests itself in the non-linear dependence of K+ and
K- yields in collisions at 1 -- 2 A.GeV on the number of participants. It
is shown that this dependence can be quantitatively well described in terms of
a thermal model with a canonical strangeness conservation. The measured
particle multiplicity ratios (pi+/p, pi-/pi+, d/p, K+/pi+ and K+/K- but not
eta/pi0) in central Au-Au and Ni-Ni collisions at 0.8 -- 2.0 A.GeV are also
explained in the context of a thermal model with a common freeze-out
temperature and chemical potential. Including the concept of collective flow a
consistent picture of particle energy distributions is derived with the flow
velocity being strongly impact-parameter dependent.Comment: revtex, 20 figure
- …
