734 research outputs found

    Strain in the mesoscale kinetic Monte Carlo model for sintering

    Get PDF
    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate densification by vacancy annihilation removes an isolated pore site at a grain boundary and collapses a column of sites extending from the vacancy to the surface of sintering compact, through the center of mass of the nearest grain. Using this algorithm, the existing published kMC models are shown to produce anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column is determined by choosing a random sample face and subsequently a random point on that face as the end point for an annihilation path with equal probabilities. This algorithm is mathematically and experimentally shown to result in isotropic strains for all samples regardless of their dimensions. Finally, the microstructural evolution is shown to be similar for the new and old annihilation algorithms.Comment: 6 pages, 6 figure

    Anomalous rotational-alignment in N=Z nuclei and residual neutron-proton interaction

    Get PDF
    Recent experiments have demonstrated that the rotational-alignment for the N=ZN=Z nuclei in the mass-80 region is considerably delayed as compared to the neighboring N≠ZN \ne Z nuclei. We investigate whether this observation can be understood by a known component of nuclear residual interactions. It is shown that the quadrupole-pairing interaction, which explains many of the delays known in rare-earth nuclei, does not produce the substantial delay observed for these N=ZN=Z nuclei. However, the residual neutron-proton interaction which is conjectured to be relevant for N=ZN=Z nuclei is shown to be quite important in explaining the new experimental data.Comment: 4 pages, 3 figures, final version accepted by Phys. Rev. C as a Rapid Communicatio

    The sintering behavior of close-packed spheres

    Get PDF
    The sintering behavior and microstructural evolution of a powder compact is influenced strongly by initial properties, such as the relative density, the particle and pore size distribution, and the powder packing. While the influence of the former parameters on the microstructural evolution has been investigated in some detail, the impact of the initial packing of the powder has been mostly overlooked. However, research has shown that the sintering behavior of a powder can be significantly improved if the powder is regularly packed. This has been shown for monodisperse spherical TiO2 particles [1], which sintered 10 times faster and exhibited almost no grain growth compared to ordinary TiO2. Similar observations has been made for homogeneously packed Al2O3 [2], SiO2 [3], as well as a number of other materials [4]. Monodispersed spherical TiO2 particles have been shown to order in face-centered cubic (fcc) arrays, while the SiO2 powder forms stacked planes of hexagonal close-packed (hcp) particles. Close packing of monodispersed silica has also been observed [5]. Sintering of two-dimensional close packing cylinders has also been demonstrated experimentally [6–8] and numerically modeled [9,10], and the sintering of particle clusters in three dimensions has also been studied [11]

    Backward-angle photoproduction of π0\pi^0 mesons on the proton at EγE_\gamma = 1.5--2.4 GeV

    Full text link
    Differential cross sections and photon beam asymmetries for π0\pi^0 photoproduction have been measured at EγE_\gamma = 1.5--2.4 GeV and at the π0\pi^0 scattering angles, --1 << cosΘc.m.<\Theta_{c.m.} < --0.6. The energy-dependent slope of differential cross sections for uu-channel π0\pi^0 production has been determined. An enhancement at backward angles is found above EγE_\gamma = 2.0 GeV. This is inferred to be due to the uu-channel contribution and/or resonances. Photon beam asymmetries have been obtained for the first time at backward angles. A strong angular dependence has been found at Eγ>E_\gamma > 2.0 GeV, which may be due to the unknown high-mass resonances.Comment: 12 pages, 4 figures, submitted to PL

    Near-threshold Lambda(1520) production by the gamma p -> K+Lambda(1520) reaction at forward K+ angles

    Full text link
    Differential cross sections and photon-beam asymmetries for the gamma p -> K+ Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6<cos(theta)<1. A new bump structure was found at W=2.11 GeV in the cross sections. The bump is not well reproduced by theoretical calculations introducing a nucleon resonance with J<=3/2. This result suggests that the bump might be produced by a nucleon resonance possibly with J>=5/2 or by a new reaction process, for example an interference effect with the phi photoproduction having a similar bump structure in the cross sections.Comment: 5 pages, 4 figures, published in Phys. Rev. Let

    Measurement of the γ⃗p→K+Λ\vec{\gamma} p \to K^+ \Lambda Reaction at Backward Angles

    Full text link
    Cross sections for the γp→K+Λ\gamma p \to K^+ \Lambda have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The Λ\Lambda was detected at forward angles in the LEPS spectrometer via its decay to pπ−p\pi^- and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.Comment: 6 figures, submitted to PRC rapid communication
    • …
    corecore