2,728 research outputs found

    A general formula of the effective potential in 5D SU(N) gauge theory on orbifold

    Full text link
    We show a general formula of the one loop effective potential of the 5D SU(N) gauge theory compactified on an orbifold, S1/Z2S^1/Z_2. The formula shows the case when there are fundamental, (anti-)symmetric tensor and adjoint representational bulk fields. Our calculation method is also applicable when there are bulk fields belonging to higher dimensional representations. The supersymmetric version of the effective potential with Scherk-Schwarz breaking can be obtained straightforwardly. We also show some examples of effective potentials in SU(3), SU(5) and SU(6) models with various boundary conditions, which are reproduced by our general formula.Comment: 22 pages;minor corrections;references added;typos correcte

    Network synchronization: Optimal and Pessimal Scale-Free Topologies

    Full text link
    By employing a recently introduced optimization algorithm we explicitely design optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency towards disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting ``pessimal networks'' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex Networks 2007

    Transmission Resonance in an Infinite Strip of Phason-Defects of a Penrose Approximant Network

    Full text link
    An exact method that analytically provides transfer matrices in finite networks of quasicrystalline approximants of any dimensionality is discussed. We use these matrices in two ways: a) to exactly determine the band structure of an infinite approximant network in analytical form; b) to determine, also analytically, the quantum resistance of a finite strip of a network under appropriate boundary conditions. As a result of a subtle interplay between topology and phase interferences, we find that a strip of phason-defects along a special symmetry direction of a low 2-d Penrose approximant, leads to the rigorous vanishing of the reflection coefficient for certain energies. A similar behavior appears in a low 3-d approximant. This type of ``resonance" is discussed in connection with the gap structure of the corresponding ordered (undefected) system.Comment: 18 pages special macros jnl.tex,reforder.tex, eqnorder.te

    How Stands Collapse II

    Get PDF
    I review ten problems associated with the dynamical wave function collapse program, which were described in the first of these two papers. Five of these, the \textit{interaction, preferred basis, trigger, symmetry} and \textit{superluminal} problems, were discussed as resolved there. In this volume in honor of Abner Shimony, I discuss the five remaining problems, \textit{tails, conservation law, experimental, relativity, legitimization}. Particular emphasis is given to the tails problem, first raised by Abner. The discussion of legitimization contains a new argument, that the energy density of the fluctuating field which causes collapse should exert a gravitational force. This force can be repulsive, since this energy density can be negative. Speculative illustrations of cosmological implications are offered.Comment: 37 page

    An Approach to Robust Decision Making in Multidisciplinary Selection Problems Under Uncertainty

    Full text link

    A Study of Activated Processes in Soft Sphere Glass

    Full text link
    On the basis of long simulations of a binary mixture of soft spheres just below the glass transition, we make an exploratory study of the activated processes that contribute to the dynamics. We concentrate on statistical measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te

    Ultra-High Energy Neutrino Fluxes: New Constraints and Implications

    Full text link
    We apply new upper limits on neutrino fluxes and the diffuse extragalactic component of the GeV gamma-ray flux to various scenarios for ultra high energy cosmic rays and neutrinos. As a result we find that extra-galactic top-down sources can not contribute significantly to the observed flux of highest energy cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce cosmic rays via interactions with relic neutrinos is practically ruled out if cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure

    Four-loop beta function and mass anomalous dimension in Dimensional Reduction

    Full text link
    Within the framework of QCD we compute renormalization constants for the strong coupling and the quark masses to four-loop order. We apply the DR-bar scheme and put special emphasis on the additional couplings which have to be taken into account. This concerns the epsilon-scalar--quark Yukawa coupling as well as the vertex containing four epsilon-scalars. For a supersymmetric Yang Mills theory, we find, in contrast to a previous claim, that the evanescent Yukawa coupling equals the strong coupling constant through three loops as required by supersymmetry.Comment: 15 pages, fixed typo in Eq. (18

    Symmetric coupling of four spin-1/2 systems

    Full text link
    We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.Comment: 20 pages, no figure
    corecore