143 research outputs found

    A molecular map of mesenchymal tumors

    Get PDF
    Background Bone and soft tissue tumors represent a diverse group of neoplasms thought to derive from cells of the mesenchyme or neural crest. Histological diagnosis is challenging due to the poor or heterogenous differentiation of many tumors, resulting in uncertainty over prognosis and appropriate therapy. Results We have undertaken a broad and comprehensive study of the gene expression profile of 96 tumors with representatives of all mesenchymal tissues, including several problem diagnostic groups. Using machine learning methods adapted to this problem we identify molecular fingerprints for most tumors, which are pathognomonic (decisive) and biologically revealing. Conclusion We demonstrate the utility of gene expression profiles and machine learning for a complex clinical problem, and identify putative origins for certain mesenchymal tumor

    Single and Combined Effects of Acute and Chronic Non-Thermal Stressors on Rat Interscapular Brown Adipose Tissue Metabolic Activity

    Get PDF
    The aim of this study was to examine whether the thermogenic potential of rat interscapular brown adipose tissue (IBAT) changes in response to acute and/or chronic exposure to non-thermal stressors (immobilization and isolation), by measuring the uncoupling protein 1 (UCP-1) content, MAO-A, SOD and CAT activities, as well as the number of IBAT sympathetic noradrenaline-containing nerve fibers. Both acute immobilization (2 h) and chronic isolation (21 days), as well as their combined effects, significantly increased the IBAT UCP-1 content in comparison to non-stressed animals. When applied individually, stressors increased the number of sympathetic fibers in comparison to controls, whereas in combination they decreased it. The activity of IBAT monoamine oxidase-A (MAO-A) decreased under the influence of each stressor independent of its type or duration. SOD activity coincided with MAO-A decrement, whereas CAT activity had an opposite pattern of changes. We conclude that acute and chronic exposure to non-thermal stressors, immobilization and isolation, respectively, affect the metabolic potential of rat IBAT, judging by the increase in UCP-1 content and sympathetic outflow. However, when acute immobilization was applied as a novel stressor to previously chronically isolated animals, an increase in the UCP-1 content was accompanied by a lower IBAT sympathetic outflow, suggesting that IBAT metabolic function under various stress condition is not solely dependent on SNS activity

    Effects of shift work on the eating behavior of police officers on patrol

    Get PDF
    Recent studies indicate that the timing of food intake can significantly affect metabolism and weight management. Workers operating at atypical times of the 24-h day are at risk of disturbed feeding patterns. Given the increased risk of weight gain, obesity and metabolic syndrome in shift working populations, further research is required to understand whether their eating behavior could contribute to these increased metabolic risks. The objective of this study was to characterize the dietary patterns of police officers across different types of shifts in their natural environments. Thirty-one police officers (six women; aged 32.1 +/- 5.4 years, mean +/- SD) from the province of Quebec, Canada, participated in a 28- to 35-day study, comprising 9- to 12-h morning, evening, and night shifts alternating with rest days. Sleep and work patterns were recorded with actigraphy and diaries. For at least 24 h during each type of work day and rest day, participants logged nutrient intake by timestamped photographs on smartphones. Macronutrient composition and caloric content were estimated by registered dieticians using the Nutrition Data System for Research database. Data were analyzed with linear mixed effects models and circular ANOVA. More calories were consumed relative to individual metabolic requirements on rest days than both evening- and night-shift days (p = 0.001), largely sourced from increased fat (p = 0.004) and carbohydrate (trend, p = 0.064) intake. Regardless, the proportions of calories from carbohydrates, fat, and protein did not differ significantly between days. More calories were consumed during the night, between 2300 h and 0600 h, on night-shift days than any other days (p < 0.001). Caloric intake occurred significantly later for night-shift days (2308 h 0114 h, circular mean +/- SD) than for rest days (1525 h +/- 0029 h; p < 0.01) and was dispersed across a longer eating window (13.9 h 3.1 h vs. 11.3 h +/- 1.8 h, mean +/- SD). As macronutrient proportions were similar and caloric intake was lower, the finding of later meals times on night-shift days versus rest days is consistent with emerging hypotheses that implicate the biological timing of food intake-rather than its quantity or composition-as the differentiating dietary factor in shift worker health.Circadian clocks in health and diseas

    Circadian Rhythms of Fetal Liver Transcription Persist in the Absence of Canonical Circadian Clock Gene Expression Rhythms In Vivo

    Get PDF
    The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture). To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny

    Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation

    Get PDF
    The initiating somatic genetic events in chordoma development have not yet been identified. Most cytogenetically investigated chordomas have displayed near-diploid or moderately hypodiploid karyotypes, with several numerical and structural rearrangements. However, no consistent structural chromosome aberration has been reported. This is the first array-based study characterising DNA copy number changes in chordoma. Array comparative genomic hybridisation (aCGH) identified copy number alterations in all samples and imbalances affecting 5 or more out of the 21 investigated tumours were seen on all chromosomes. In general, deletions were more common than gains and no high-level amplification was found, supporting previous findings of primarily losses of large chromosomal regions as an important mechanism in chordoma development. Although small imbalances were commonly found, the vast majority of these were detected in single cases; no small deletion affecting all tumours could be discerned. However, the CDKN2A and CDKN2B loci in 9p21 were homo- or heterozygously lost in 70% of the tumours, a finding corroborated by fluorescence in situ hybridisation, suggesting that inactivation of these genes constitute an important step in chordoma development

    Sequencing chemotherapy and radiotherapy in locoregional advanced breast cancer patients after mastectomy – a retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combined chemo- and radiotherapy are established in breast cancer treatment. Chemotherapy is recommended prior to radiotherapy but decisive data on the optimal sequence are rare. This retrospective analysis aimed to assess the role of sequencing in patients after mastectomy because of advanced locoregional disease.</p> <p>Methods</p> <p>A total of 212 eligible patients had a stage III breast cancer and had adjuvant chemotherapy and radiotherapy after mastectomy and axillary dissection between 1996 and 2004. According to concerted multi-modality treatment strategies 86 patients were treated sequentially (chemotherapy followed by radiotherapy) (SEQgroup), 70 patients had a sandwich treatment (SW-group) and 56 patients had simultaneous chemoradiation (SIM-group) during that time period. Radiotherapy comprised the thoracic wall and/or regional lymph nodes. The total dose was 45–50.4 Gray. As simultaneous chemoradiation CMF was given in 95.4% of patients while in sequential or sandwich application in 86% and 87.1% of patients an anthracycline-based chemotherapy was given.</p> <p>Results</p> <p>Concerning the parameters nodal involvement, lymphovascular invasion, extracapsular spread and extension of the irradiated region the three treatment groups were significantly imbalanced. The other parameters, e.g. age, pathological tumor stage, grading and receptor status were homogeneously distributed. Looking on those two groups with an equally effective chemotherapy (EC, FEC), the SEQ- and SW-group, the sole imbalance was the extension of LVI (57.1 vs. 25.6%, p < 0.0001).</p> <p>5-year overall- and disease free survival were 53.2%/56%, 38.1%/32% and 64.2%/50%, for the sequential, sandwich and simultaneous regime, respectively, which differed significantly in the univariate analysis (p = 0.04 and p = 0.03, log-rank test). Also the 5-year locoregional or distant recurrence free survival showed no significant differences according to the sequence of chemo- and radiotherapy. In the multivariate analyses the sequence had no independent impact on overall survival (p = 0.2) or disease free survival (p = 0.4). The toxicity, whether acute nor late, showed no significant differences in the three groups. The grade III/IV acute side effects were 3.6%, 0% and 3.5% for the SIM-, SW- and SEQ-group. By tendency the SIM regime had more late side effects.</p> <p>Conclusion</p> <p>No clear advantage can be stated for any radio- and chemotherapy sequence in breast cancer therapy so far. This could be confirmed in our retrospective analysis in high-risk patients after mastectomy. The sequential approach is recommended according to current guidelines considering a lower toxicity.</p

    Nocturnin Expression Is Induced by Fasting in the White Adipose Tissue of Restricted Fed Mice

    Get PDF
    The relationship between circadian clocks and metabolism is intimate and complex and a number of recent studies have begun to reveal previously unknown effects of food and its temporal availability on the clock and the rhythmic transcriptome of peripheral tissues. Nocturnin, a circadian deadenylase, is expressed rhythmically in a wide variety of tissues, but we report here that Nocturnin expression is arrhythmic in epididymal white adipose tissue (eWAT) of mice housed in 12∶12 LD with ad libitum access to food. However, Nocturnin expression becomes rhythmic in eWAT of mice placed on restricted feeding. We show here that Nocturnin's rhythmic expression pattern is not dependent upon feeding, nor is it acutely induced by feeding in the liver or eWAT of ad libitum fed mice. However, Nocturnin is acutely induced by the absence of the expected meal in eWAT of restricted fed mice. A rise in cAMP levels also induces Nocturnin expression, suggesting that Nocturnin's induction in eWAT by fasting is likely mediated through the same pathways that activate lipolysis. Therefore, this suggests that Nocturnin plays a role in linking nutrient sensing by the circadian clock to lipid mobilization in the adipocytes

    Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway

    Get PDF
    Chordomas are radio- and chemo-resistant tumours and metastasise in as many as 40% of patients. The aim of this study was to identify potential molecular targets for the treatment of chordoma. In view of the reported association of chordoma and tuberous sclerosis complex syndrome, and the available therapeutic agents against molecules in the PI3K/AKT/TSC1/TSC2/mTOR pathway, a tissue microarray of 50 chordoma cases was analysed for expression of active molecules involved in this signalling pathway by immunohistochemistry and a selected number by western blot analysis. Chordomas were positive for p-AKT (92%), p-TSC2 (96%), p-mTOR (27%), total mTOR (75%), p-p70S6K (62%), p-RPS6 (22%), p-4E-BP1 (96%) and eIF-4E (98%). Phosphatase and tensin homologue deleted on chromosome 10 expression was lost in 16% of cases. Mutations failed to be identified in PI3KCA and RHEB1 in the 23 cases for which genomic DNA was available. Fluorescence in situ hybridisation analysis for mTOR and RPS6 loci showed that 11 of 33 and 21 of 44 tumours had loss of one copy of the respective genes, results which correlated with the loss of the relevant total proteins. Fluorescence in situ hybridisation analysis for loci containing TSC1 and TSC2 revealed that all cases analysed harboured two copies of the respective genes. On the basis of p-mTOR and or p-p70S6K expression there is evidence indicating that 65% of the chordomas studied may be responsive to mTOR inhibitors, rapamycin or its analogues, and that patients may benefit from combined therapy including drugs that inhibit AKT

    Assessing non-Mendelian inheritance in inherited axonopathies

    Get PDF
    PURPOSE: Inherited axonopathies (IA) are rare, clinically and genetically heterogeneous diseases that lead to length-dependent degeneration of the long axons in central (hereditary spastic paraplegia [HSP]) and peripheral (Charcot–Marie–Tooth type 2 [CMT2]) nervous systems. Mendelian high-penetrance alleles in over 100 different genes have been shown to cause IA; however, about 50% of IA cases do not receive a genetic diagnosis. A more comprehensive spectrum of causative genes and alleles is warranted, including causative and risk alleles, as well as oligogenic multilocus inheritance. METHODS: Through international collaboration, IA exome studies are beginning to be sufficiently powered to perform a pilot rare variant burden analysis. After extensive quality control, our cohort contained 343 CMT cases, 515 HSP cases, and 935 non-neurological controls. We assessed the cumulative mutational burden across disease genes, explored the evidence for multilocus inheritance, and performed an exome-wide rare variant burden analysis. RESULTS: We replicated the previously described mutational burden in a much larger cohort of CMT cases, and observed the same effect in HSP cases. We identified a preliminary risk allele for CMT in the EXOC4 gene (p value= 6.9 × 10-6, odds ratio [OR] = 2.1) and explored the possibility of multilocus inheritance in IA. CONCLUSION: Our results support the continuing emergence of complex inheritance mechanisms in historically Mendelian disorders
    corecore