112 research outputs found

    Bio-informatics analysis of a gene co-expression module in adipose tissue containing the diet-responsive gene Nnat

    Get PDF
    Background: Obesity causes insulin resistance in target tissues - skeletal muscle, adipose tissue, liver and the brain. Insulin resistance predisposes to type-2 diabetes (T2D) and cardiovascular disease (CVD). Adipose tissue inflammation is an essential characteristic of obesity and insulin resistance. Neuronatin (Nnat) expression has been found to be altered in a number of conditions related to inflammatory or metabolic disturbance, but its physiological roles and regulatory mechanisms in adipose tissue, brain, pancreatic islets and other tissues are not understood. Results: We identified transcription factor binding sites (TFBS) conserved in the Nnat promoter, and transcription factors (TF) abundantly expressed in adipose tissue. These include transcription factors concerned with the control of: adipogenesis (Ppar gamma, Klf15, Irf1, Creb1, Egr2, Gata3); lipogenesis (Mlxipl, Srebp1c); inflammation (Jun, Stat3); insulin signalling and diabetes susceptibility (Foxo1, Tcf7l2). We also identified NeuroD1 the only documented TF that controls Nnat expression. We identified KEGG pathways significantly associated with Nnat expression, including positive correlations with inflammation and negative correlations with metabolic pathways (most prominently oxidative phosphorylation, glycolysis and gluconeogenesis, pyruvate metabolism) and protein turnover. 27 genes, including; Gstt1 and Sod3, concerned with oxidative stress; Sncg and Cxcl9 concerned with inflammation; Ebf1, Lgals12 and Fzd4 involved in adipogenesis; whose expression co-varies with Nnat were identified, and conserved transcription factor binding sites identified on their promoters. Functional networks relating to each of these genes were identified. Conclusions: Our analysis shows that Nnat is an acute diet-responsive gene in white adipose tissue and hypothalamus; it may play an important role in metabolism, adipogenesis, and resolution of oxidative stress and inflammation in response to dietary exces

    A Comparative Analysis Shows Morphofunctional Differences between the Rat and Mouse Melanin-Concentrating Hormone Systems

    Get PDF
    Sub-populations of neurons producing melanin-concentrating hormone (MCH) are characterized by distinct projection patterns, birthdates and CART/NK3 expression in rat. Evidence for such sub-populations has not been reported in other species. However, given that genetically engineered mouse lines are now commonly used as experimental models, a better characterization of the anatomy and morphofunctionnal organization of MCH system in this species is then necessary. Combining multiple immunohistochemistry experiments with in situ hybridization, tract tracing or BrdU injections, evidence supporting the hypothesis that rat and mouse MCH systems are not identical was obtained: sub-populations of MCH neurons also exist in mouse, but their relative abundance is different. Furthermore, divergences in the distribution of MCH axons were observed, in particular in the ventromedial hypothalamus. These differences suggest that rat and mouse MCH neurons are differentially involved in anatomical networks that control feeding and the sleep/wake cycle

    Inhibitory Role of Inducible cAMP Early Repressor (ICER) in Methamphetamine-Induced Locomotor Sensitization

    Get PDF
    BACKGROUND: The inducible cyclic adenosine monophosphate (cAMP) early repressor (ICER) is highly expressed in the central nervous system and functions as a repressor of cAMP response element-binding protein (CREB) transcription. The present study sought to clarify the role of ICER in the effects of methamphetamine (METH). METHODS AND FINDINGS: We tested METH-induced locomotor sensitization in wildtype mice, ICER knockout mice, and ICER I-overexpressing mice. Both ICER wildtype mice and knockout mice displayed increased locomotor activity after continuous injections of METH. However, ICER knockout mice displayed a tendency toward higher locomotor activity compared with wildtype mice, although no significant difference was observed between the two genotypes. Moreover, compared with wildtype mice, ICER I-overexpressing mice displayed a significant decrease in METH-induced locomotor sensitization. Furthermore, Western blot analysis and quantitative real-time reverse transcription polymerase chain reaction demonstrated that ICER overexpression abolished the METH-induced increase in CREB expression and repressed cocaine- and amphetamine-regulated transcript (CART) and prodynorphin (Pdyn) expression in mice. The decreased CART and Pdyn mRNA expression levels in vivo may underlie the inhibitory role of ICER in METH-induced locomotor sensitization. CONCLUSIONS: Our data suggest that ICER plays an inhibitory role in METH-induced locomotor sensitization

    Admixture Mapping of 15,280 African Americans Identifies Obesity Susceptibility Loci on Chromosomes 5 and X

    Get PDF
    The prevalence of obesity (body mass index (BMI) ≥30 kg/m2) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (ρ = −0.042, P = 1.6×10−7). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = −3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = −4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI

    Synthesis, X-ray Analysis, and Biological Evaluation of a New Class of Stereopure Lactam-Based HIV-1 Protease Inhibitors

    Get PDF
    In an effort to identify a new class of druglike HIV-1 protease inhibitors, four different stereopure beta-hydroxy gamma-lactam-containing inhibitors have been synthesized, biologically evaluated, and cocrystallized. The impact of the tether length of the central spacer (two or three carbons) was also investigated. A compound with a shorter tether and (3R,4S) absolute configuration exhibited high activity with a K-i of 2.1 nM and an EC50 of 0.64 mu M. Further optimization by decoration of the P1' side chain furnished an even more potent HIV-1 protease inhibitor (K-i = 0.8 nM, EC50 = 0.04 mu M). According to X-ray analysis, the new class of inhibitors did not fully succeed in forming two symmetric hydrogen bonds to the catalytic aspartates. The crystal structures of the complexes further explain the difference in potency between the shorter inhibitors (two-carbon spacer) and the longer inhibitors (three-carbon spacer)

    A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates

    Get PDF
    The glucagon (GCG) peptide family consists of GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from a common GCG precursor, and the glucose-dependent insulinotropic polypeptide (GIP). These peptides interact with cognate receptors, GCGR, GLP1R, GLP2R, and GIPR, which belong to the secretin-like G protein-coupled receptor (GPCR) family. We used bioinformatics to identify genes encoding a novel GCG-related peptide (GCRP) and its cognate receptor, GCRPR. The GCRP and GCRPR genes were found in representative tetrapod taxa such as anole lizard, chicken, and Xenopus, and in teleosts including medaka, fugu, tetraodon, and stickleback. However, they were not present in mammals and zebrafish. Phylogenetic and genome synteny analyses showed that GCRP emerged through two rounds of whole genome duplication (2R) during early vertebrate evolution. GCRPR appears to have arisen by local tandem gene duplications from a common ancestor of GCRPR, GCGR, and GLP2R after 2R. Biochemical ligand-receptor interaction analyses revealed that GCRP had the highest affinity for GCRPR in comparison to other GCGR family members. Stimulation of chicken, Xenopus, and medaka GCRPRs activated Gαs-mediated signaling. In contrast to chicken and Xenopus GCRPRs, medaka GCRPR also induced Gαq/11-mediated signaling. Chimeric peptides and receptors showed that the K(16)M(17)K(18) and G(16)Q(17)A(18) motifs in GCRP and GLP1, respectively, may at least in part contribute to specific recognition of their cognate receptors through interaction with the receptor core domain. In conclusion, we present novel data demonstrating that GCRP and GCRPR evolved through gene/genome duplications followed by specific modifications that conferred selective recognition to this ligand-receptor pair
    corecore